Chemical Thermodynamics MCQ Questions & Answers in Physical Chemistry | Chemistry
Learn Chemical Thermodynamics MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.
171.
Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:
\[\frac{1}{2}C{l_2}\left( g \right)\xrightarrow{{\frac{1}{2}{\Delta _{diss}}{H^\Theta }}}Cl\left( g \right)\xrightarrow{{{\Delta _{cg}}{H^\Theta }}}C{l^{^ - }}\left( g \right)\xrightarrow{{{\Delta _{Hyd}}{H^\Theta }}}C{l^ - }\left( {aq} \right)\]
$$\eqalign{
& \left( {{\text{using}}\,{\text{the}}\,{\text{data}}} \right.{\text{,}} \cr
& {\Delta _{diss}}H_{C{L_2}}^\Theta = 240\,kJ\,mo{l^{ - 1}},\,{\Delta _{eg}}H_{Cl}^\Theta = - 349\,kJ\,mo{l^{ - 1}}, \cr
& {\Delta _{hyd}}H_{C{l^ - }}^\Theta = - 381\,kJ\,\left. {mo{l^{ - 1}}} \right),\,{\text{will}}\,{\text{be}} \cr} $$
A
$${\text{ + 152}}\,{\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}$$
B
$$ - 610\,kJ\,mo{l^{ - 1}}$$
C
$$ - 850\,kJ\,mo{l^{ - 1}}$$
D
$$ + 120\,kJ\,mo{l^{ - 1}}$$
Answer :
$$ - 610\,kJ\,mo{l^{ - 1}}$$
The energy involved in the conversion of
$$\eqalign{
& \frac{1}{2}C{l_2}\left( g \right)\,\,{\text{to}}\,\,C{l^{ - 1}}\left( {aq} \right)\,{\text{is}}\,{\text{given}}\,{\text{by}} \cr
& \Delta H = \frac{1}{2}{\Delta _{diss}}H_{C{l_2}}^{\left( - \right)} + {\Delta _{eg}}H_{Cl}^{\left( - \right)} + {\Delta _{hyl}}H_{Cl}^{\left( - \right)} \cr} $$
Substituting various values from given data, we get
$$\eqalign{
& \Delta H = \left( {\frac{1}{2} \times 240} \right) + \left( { - 349} \right) + \left( { - 381} \right)kJ\,mo{l^{ - 1}} \cr
& = \left( {120 - 349 - 381} \right)\,kJ\,mo{l^{ - 1}} \cr
& = - 610\,kJ\,mo{l^{ - 1}} \cr} $$
i.e., the correct answer is (B)
172.
The combustion of benzene $$(l)$$ gives $$C{O_2}\left( g \right)$$ and $${H_2}O\left( l \right)$$ . Given that heat of combustion of benzene at constant volume is $$ - 3263.9\,kJ\,mo{l^{ - 1}}$$ at $${25^ \circ }C$$ ; heat of combustion ( in $$kJ\,mo{l^{ - 1}}$$ ) of benzene at constant pressure will be :
$$\left( {R = 8.314\,J{K^{ - 1}}\,mo{l^{ - 1}}} \right)$$
$$\left( {\text{A}} \right):C{H_{4\left( g \right)}} + 2{O_{2\left( g \right)}} \to C{O_{2\left( g \right)}} + 2{H_2}O$$ shows combustion reaction
$$\left( {\text{B}} \right):{H_{2\left( g \right)}} \to 2{H_{\left( g \right)}}$$ shows bond dissociation
$$\left( {\text{C}} \right):NaC{l_{\left( s \right)}} \to Na_{\left( g \right)}^ + + Cl_{\left( g \right)}^ - $$ shows dissociation of $$NaCl$$
$$\left( {\text{D}} \right):NaC{l_{\left( s \right)}} \to Na_{\left( {aq} \right)}^ + + Cl_{\left( {aq} \right)}^ - $$ shows dissolution of $$NaCl$$
175.
The densities of graphite and diamond at $$298\,K$$ are $$2.25\,$$ and $$3.31\,g\,c{m^{ - 3}},$$ respectively. If the standard free energy difference $$\left( {\Delta {G^ \circ }} \right)$$ is equal to $$1895\,J\,mo{l^{ - 1}},$$ the pressure at which graphite will be transformed into diamond at $$298\,K$$ is
176.
For the process $${H_2}O\left( l \right)\, \to \,{H_2}O\left( g \right)$$ at $$T = {100^ \circ }C$$ and 1 atmosphere pressure, the correct choice is
A
$$\Delta {S_{{\text{system}}}} > \,0\,{\text{and}}\,\Delta {S_{{\text{surroundings}}}} > 0$$
B
$$\Delta {S_{{\text{system}}}} > \,0\,{\text{and}}\,\Delta {S_{{\text{surroundings}}}} < 0$$
C
$$\Delta {S_{{\text{system}}}} < \,0\,{\text{and}}\,\Delta {S_{{\text{surroundings}}}} > 0$$
D
$$\Delta {S_{{\text{system}}}} < \,0\,{\text{and}}\,\Delta {S_{{\text{surroundings}}}} < 0$$
Given conditions are boiling conditions for water due to which
$$\eqalign{
& \Delta {S_{total}} = 0 \cr
& \Delta {S_{system}} + \Delta {S_{surroundings}} = 0 \cr
& \Delta {S_{system}} = - \Delta {S_{surroundings}} \cr
& {\text{For}}\,{\text{process,}}\,\,\Delta {S_{system}} > 0 \cr
& \Delta {S_{surroundings}} < 0 \cr} $$
177.
Standard enthalpy of combustion of $$C{H_4}$$ is $$ - 890\,kJ\,mo{l^{ - 1}}$$ and standard enthalpy of vaporisation of water is $$40.5\,kJ\,mo{l^{ - 1}}.$$ The enthalpy change of the reaction $$C{H_4}\left( g \right) + 2{O_2}\left( g \right) \to C{O_2}\left( g \right) + {H_2}O\left( g \right)$$
A
$$ - 809.5\,kJ\,mo{l^{ - 1}}$$
B
$$ - 890\,kJ\,mo{l^{ - 1}}$$
C
$$809\,kJ\,mo{l^{ - 1}}$$
D
$$ - 971\,kJ\,mo{l^{ - 1}}$$
Answer :
$$ - 809.5\,kJ\,mo{l^{ - 1}}$$
$$\eqalign{
& C{H_4}\left( g \right) + 2\,{O_2}\left( g \right) \to C{O_2}\left( g \right) + 2{H_2}O\left( l \right) \cr
& \Delta H = - 890\,kJ\,\,\,....\left( {\text{i}} \right) \cr
& 2\,{H_2}O\left( l \right) \to 2\,{H_2}O\left( g \right); \cr
& \Delta H = 2 \times 40.5 = 81\,kJ\,\,\,...\left( {{\text{ii}}} \right) \cr
& {\text{From}}\,\,\left( {\text{i}} \right) + \left( {{\text{ii}}} \right),{\text{we get}} \cr
& C{H_4}\left( g \right) + 2\,{O_2}\left( g \right) \to C{O_2}\left( g \right) + 2{H_2}O\left( g \right) \cr
& \Delta H = - 890 + 81 = - 809\,kJ \cr} $$
178.
The total entropy change $$\left( {\Delta {S_{{\text{total}}}}} \right)$$ for the system and surrounding of a spontaneous process is given by
For a spontaneous process, total change in entropy ( system + surrounding ) should be positive.
179.
A certain reaction is non spontaneous at $$298\,K.$$ The entropy change during the reaction is $$121\,J{K^{ - 1}}.$$ Is the reaction is endothermic or exothermic ? The minimum value of $$\Delta H$$ for the reaction is
A
$${\text{endothermic,}}\,\Delta H = 36.06\,kJ$$
B
$${\text{exothermic,}}\,\Delta H = - 36.06\,kJ$$
C
$${\text{endothermic,}}\,\Delta H = 60.12\,kJ$$
D
$${\text{exothermic,}}\,\Delta H = - 60.12\,kJ$$
Answer :
$${\text{endothermic,}}\,\Delta H = 36.06\,kJ$$
For non spontaneous reaction
$$\eqalign{
& \Delta G = + ve \cr
& \Delta G = \Delta H - T\Delta S\,\,{\text{and}} \cr
& \Delta S = 121\,J{K^{ - 1}} \cr
& {\text{For}}\,\,\Delta G = + ve \cr} $$
$$\Delta H$$ has to be positive. Hence the reaction is endothermic.
The minimum value of $$\Delta H$$ can be obtained by putting $$\Delta G = 0$$
$$\eqalign{
& \Delta H = T\Delta S = 298 \times 121\,J \cr
& = 36.06\,kJ \cr} $$
180.
Which of the following statements is not correct ?
A
For a spontaneous process, $$\Delta G$$ must be negative.
B
Enthalpy, entropy, free energy etc. are state variables.
C
A spontaneous process is reversible in nature.
D
Total of all possible kinds of energy of a system is called its internal energy.
Answer :
A spontaneous process is reversible in nature.
A spontaneous process is an irreversible process and may only be reversed by some external energy.