Electrochemistry MCQ Questions & Answers in Physical Chemistry | Chemistry

Learn Electrochemistry MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.

161. Resistance of a conductivity cell filled with a solution of an electrolyte of concentration $$0.1 M$$  is $$100\,\Omega .$$ The conductivity of this solution is $$1.29\,S\,{m^{ - 1}}.$$   Resistance of the same cell when filled with $$0.2 M$$  of the same solution is $$520\,\Omega .$$  The molar conductivity of $$0.2 M$$  solution of electrolyte will be

A $$1.24 \times {10^{ - 4}}S\,{m^2}\,mo{l^{ - 1}}$$
B $$12.4 \times {10^{ - 4}}S\,{m^2}\,mo{l^{ - 1}}$$
C $$124 \times {10^{ - 4}}S\,{m^2}\,mo{l^{ - 1}}$$
D $$1240 \times {10^{ - 4}}S\,{m^2}\,mo{l^{ - 1}}$$
Answer :   $$12.4 \times {10^{ - 4}}S\,{m^2}\,mo{l^{ - 1}}$$

162. A solution of sodium sulphate in water is electrolysed using inert electrodes. The products at the cathode and anode are respectively

A $${H_2},{O_2}$$
B $${O_2},{H_2}$$
C $${O_2},Na$$
D $${O_2},S{O_2}$$
Answer :   $${H_2},{O_2}$$

163. Given $${E^ \circ }_{\frac{{C{r^{3 + }}}}{{Cr}}} = - 0.72\,V,\,{E^ \circ }_{\frac{{F{e^{2 + }}}}{{Fe}}} = - 0.42\,V.$$        The potential for the cell $$Cr\left| {C{r^{3 + }}\left( {0.1M} \right)} \right|\left| {F{e^{2 + }}\left( {0.01M} \right)} \right|Fe\,{\text{is}}$$

A $$0.26 V$$
B $$0.336 V$$
C $$-0.339$$
D $$0.26 V$$
Answer :   $$0.26 V$$

164. In a galvanic cell, the salt bridge
(i) does not participate chemically in the cell reaction
(ii) stops the diffusion of ions from one electrode to another
(iii) is necessary for the occurrence of the cell reaction
(iv) ensures mixing of the two electrolytic solutions.

A (i) and (iii) only
B (i) and (ii) only
C (iii) and (iv) only
D all of these
Answer :   (i) and (ii) only

165. At $$298K$$  the standard free energy of formation of $${H_2}O\left( l \right)$$  is $$ - 237.20\,kJ/mol$$     while that of its ionisation into $${H^ + }\,ion$$   and hydroxyl ions is $$80\,kJ/mol,$$   then the emf of the following cell at $$298\,K$$  will be
[ Take Faraday constant $$F = 96500\,C$$   ]
$${H_2}\left( {g,1\,bar} \right)\left| {{H^ + }\left( {1M} \right)} \right|\left| {O{H^ - }\left( {1M} \right)} \right|{O_2}\left( {g,1\,bar} \right)$$

A $$0.40\,V$$
B $$0.81\,V$$
C $$1.23\,V$$
D $$ - 0.40\,V$$
Answer :   $$ - 0.40\,V$$

166. At $$298\,K,$$  the standard reduction potentials are $$1.51\,V$$  for $$MnO_4^ - \left| {M{n^{2 + }},1.36\,V\,{\text{for}}\,C{l_2}} \right|$$       $$C{l^ - },1.07V\,{\text{for}}\,B{r_2}$$     $$\left| {B{r^ - },{\text{and}}\,0.54V\,} \right.{\text{for}}\,{I_2}\left| {{I^ - }.} \right.$$      $$At\,pH = 3,$$   permanganate is expected to oxidize : $$\left( {\frac{{RT}}{F} = 0.059V} \right)$$

A $$C{l^ - },B{r^ - }\,{\text{and}}\,{I^ - }$$
B $$B{r^ - }\,{\text{and}}\,{I^ - }$$
C $$C{l^ - }\,{\text{and}}\,B{r^ - }$$
D $${I^ - }\,{\text{only}}$$
Answer :   $$B{r^ - }\,{\text{and}}\,{I^ - }$$

167. The rusting of iron takes place as follows
$$\eqalign{ & 2{H^ + } + 2{e^ - }{ + ^{\frac{1}{2}}}{O_2} \to {H_2}O\left( l \right);\,{E^o} = + 1.23\,V \cr & F{e^{2 + }} + 2{e^ - } \to Fe\left( s \right);\,{E^o} = - 0.44\,V \cr} $$
Calculate $$\Delta {G^o}$$  for the net process

A $$ - 322\,kJ\,mo{l^{ - 1}}$$
B $$ - 161\,kJ\,mo{l^{ - 1}}$$
C $$ - 152\,kJ\,mo{l^{ - 1}}$$
D $$ - 76\,kJ\,mo{l^{ - 1}}$$
Answer :   $$ - 322\,kJ\,mo{l^{ - 1}}$$

168. $$C{u^ + }\left( {aq} \right)$$  is unstable in solution and undergoes simultaneous oxidation and reduction according to the reaction $$2C{u^ + }\left( {aq} \right) \rightleftharpoons C{u^{2 + }}\left( {aq} \right) + Cu\left( s \right)$$         Choose the correct $${E^ \circ }$$  for above reaction if $$E_{\frac{{C{u^{2 + }}}}{{Cu}}}^ \circ = 0.34\,V$$   and $$E_{\frac{{C{u^{2 + }}}}{{C{u^ + }}}}^ \circ = 0.15\,V$$

A $$ - \,0.38\,V$$
B $$ + \,0.49\,V$$
C $$ + \,0.38\,V$$
D $$ - 0.19\,V$$
Answer :   $$ + \,0.38\,V$$

169. In the electrolysis of aqueous sodium chloride solution which of the half cell reaction will occur at anode?

A $$Na_{\left( {aq} \right)}^ + + {e^ - } \to N{a_{\left( s \right)}};E_{{\text{cell}}}^ \circ = - 2.71\,V$$
B $$2{H_2}{O_{\left( l \right)}} \to {O_{2\left( g \right)}} + 4H_{\left( {aq} \right)}^ + + 4{e^ - };$$       $$E_{{\text{cell}}}^ \circ = 1.23\,V$$
C $$H_{\left( {aq} \right)}^ + + {e^ - } \to \frac{1}{2}{H_{2\left( g \right)}};$$     $$E_{{\text{cell}}}^ \circ = 0.00\,V$$
D $$Cl_{\left( {aq} \right)}^ - \to \frac{1}{2}C{l_{2\left( g \right)}} + {e^ - };$$     $$E_{{\text{cell}}}^ \circ = 1.36\,V$$
Answer :   $$Cl_{\left( {aq} \right)}^ - \to \frac{1}{2}C{l_{2\left( g \right)}} + {e^ - };$$     $$E_{{\text{cell}}}^ \circ = 1.36\,V$$

170.
Electrolyte: $$KCl$$ $$KN{O_3}$$ $$HCl$$ $$NaOAc$$ $$NaCl$$
$${\Lambda ^\infty }\left( {S\,\,c{m^2}\,\,mo{l^{ - 1}}} \right):$$ 149.9 145 426.2 91 126.5

Calculate $$\Lambda _{HOAc}^\infty $$  using appropriate molar conductances of the electrolytes listed above at infinite dilution in $${H_2}O$$  at $${25^ \circ }C$$

A 217.5
B 390.7
C 552.7
D 517.2
Answer :   390.7