Mathematical Induction MCQ Questions & Answers in Algebra | Maths
Learn Mathematical Induction MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
21.
For a positive integer $$n,$$ Let $$a\left( n \right) = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + ..... + \frac{1}{{\left( {{2^n}} \right) - 1}}.$$ Then
A
$$a\left( {100} \right) \leqslant 100$$
B
$$a\left( {100} \right) > 100$$
C
$$a\left( {200} \right) \leqslant 100$$
D
$$a\left( {200} \right) < 100$$
Answer :
$$a\left( {100} \right) \leqslant 100$$
It can be proved with the help of mathematical induction that $$\frac{n}{2} > a\left( n \right) \leqslant n.$$
$$\eqalign{
& \therefore \frac{{200}}{2} < a\left( {200} \right) \cr
& \Rightarrow a\left( {200} \right) > 100{\text{ and }}a\left( {100} \right) \leqslant 100. \cr} $$
22.
If $$n \in N$$ and $$n > 1,$$ then
A
$$n! > {\left( {\frac{{n + 1}}{2}} \right)^n}$$
B
$$n! \geqslant {\left( {\frac{{n + 1}}{2}} \right)^n}$$
When $$n = 2$$ then $${\left( {\frac{{n + 1}}{2}} \right)^n} = \frac{9}{4}$$
$$ \Rightarrow n! < {\left( {\frac{{n + 1}}{2}} \right)^n}$$
When $$n = 3,$$ then $$n! = 6,{\left( {\frac{{n + 1}}{2}} \right)^n} = 8$$
$$ \Rightarrow n! < {\left( {\frac{{n + 1}}{2}} \right)^n}$$
When $$n = 4,$$ then $$n! = 24,$$
$$\eqalign{
& {\left( {\frac{{n + 1}}{2}} \right)^n} = \frac{{625}}{{16}} \cr
& \Rightarrow n! < {\left( {\frac{{n + 1}}{2}} \right)^n} \cr} $$
$$\therefore $$ It is seen that $$n! < {\left( {\frac{{n + 1}}{2}} \right)^n}$$
23.
For all $$n \in N,1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + ..... + \frac{1}{{1 + 2 + 3 + ..... + n}}$$ is equal to
A
$$\frac{{3n}}{{n + 1}}$$
B
$$\frac{{n}}{{n + 1}}$$
C
$$\frac{{2n}}{{n - 1}}$$
D
$$\frac{{2n}}{{n + 1}}$$
Answer :
$$\frac{{2n}}{{n + 1}}$$
Let the statement $$P\left( n \right)$$ be defined as
$$\eqalign{
& P\left( n \right):1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + ..... + \frac{1}{{1 + 2 + 3 + ..... + n}} = \frac{{2n}}{{n + 1}} \cr
& {\text{i}}{\text{.e}}{\text{., }}P\left( n \right):1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + ..... + \frac{2}{{n\left( {n + 1} \right)}} = \frac{{2n}}{{n + 1}} \cr} $$ Step I : For $$n = 1,P\left( 1 \right):1 = \frac{{2 \times 1}}{{1 + 1}} = \frac{2}{2} = 1,$$
which is true. Step II : Let it is true for $$n = k,$$ i.e., $$1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + ..... + \frac{2}{{k\left( {k + 1} \right)}} = \frac{{2k}}{{k + 1}}\,\,\,.....\left( {\text{i}} \right)$$ Step III : For $$n = k + 1,\left( {1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + ..... + \frac{2}{{k\left( {k + 1} \right)}}} \right) + \frac{2}{{\left( {k + 1} \right)\left( {k + 2} \right)}}$$
$$ = \frac{{2k}}{{k + 1}} + \frac{2}{{\left( {k + 1} \right)\left( {k + 2} \right)}}$$ [using equation (i)]
$$ = \frac{{2k\left( {k + 2} \right) + 2}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \frac{{2\left[ {{k^2} + 2k + 1} \right]}}{{\left( {k + 1} \right)\left( {k + 2} \right)}}$$ [taking 2 common in numerator part]
$$ = \frac{{2{{\left( {k + 1} \right)}^2}}}{{\left( {k + 1} \right)\left( {k + 2} \right)}} = \frac{{2\left( {k + 1} \right)}}{{k + 2}} = \frac{{2\left( {k + 1} \right)}}{{\left( {k + 1} \right) + 1}}$$
Therefore, $$P\left( {k + 1} \right)$$ is true, when $$P\left( {k} \right)$$ is true.
Hence, from the principle of mathematical induction, the statement is true for all natural numbers $$n.$$
24.
Let $$P\left( n \right):$$ "$${2^n} < \left( {1 \times 2 \times 3 \times ..... \times n} \right)$$ ". Then the smallest positive integer for which $$P\left( n \right)$$ is true is
28.
For given series : $${1^2} + 2 \times {2^2} + {3^2} + 2 \times {4^2} + {5^2} + 2 \times {6^2} + .....,$$ if $$S_n$$ is the sum of $$n$$ terms, then
A
$${S_n} = \frac{{n{{\left( {n + 1} \right)}^2}}}{2},\,$$ if $$n$$ is even
B
$${S_n} = \frac{{{n^2}\left( {n + 1} \right)}}{2},\,$$ if $$n$$ is odd
C
Both $$\left( a \right)$$ and $$\left( b \right)$$ are true
D
Both $$\left( a \right)$$ and $$\left( b \right)$$ are false
Answer :
Both $$\left( a \right)$$ and $$\left( b \right)$$ are true
Let $$P\left( n \right):{S_n}$$
\[ = \left\{ \begin{array}{l}
\frac{{n{{\left( {n + 1} \right)}^2}}}{2},\,\,{\rm{when }}\,\,n\,\,{\rm{is\,\, even}}\\
\frac{{{n^2}\left( {n + 1} \right)}}{2},{\rm{ when }}\,\,n\,\,{\rm{is \,\,odd}}
\end{array} \right.\]
Also, note that any term $$T_n$$ of the series is given by
\[{T_n} = \left\{ \begin{array}{l}
{n^2},{\rm{ if }}\,\,n\,\,{\rm{ is \,\,odd}}\\
{\rm{2}}{{\rm{n}}^2},{\rm{ if }}\,\,n\,\,{\rm{ is\,\, even}}
\end{array} \right.\]
We observe that $$P\left( 1 \right)$$ is true, Since
$$P\left( 1 \right):{S_1} = {1^2} = 1 = \frac{{1 \cdot 2}}{2} = \frac{{{1^2} \cdot \left( {1 + 1} \right)}}{2}$$
Assume that $$P\left( k \right)$$ is true for some natural number $$k,$$ i.e., Case I : When $$k$$ is odd, then $$k + 1$$ is even. We have,
$$\eqalign{
& P\left( {k + 1} \right):{S_{k + 1}} = {1^2} + 2 \times {2^2} + ..... + {k^2} + 2 \times {\left( {k + 1} \right)^2} \cr
& = \frac{{{k^2}\left( {k + 1} \right)}}{2} + 2 \times {\left( {k + 1} \right)^2} \cr
& = \frac{{\left( {k + 1} \right)}}{2}\left[ {{k^2} + 4\left( {k + 1} \right)} \right] = \frac{{k + 1}}{2}\left[ {{k^2} + 4k + 4} \right] \cr
& = \frac{{k + 1}}{2}{\left( {k + 2} \right)^2} = \left( {k + 1} \right)\frac{{{{\left[ {\left( {k + 1} \right) + 1} \right]}^2}}}{2} \cr} $$
So, $$P\left( {k + 1} \right)$$ is true, whenever $$P\left( {k} \right)$$ is true, in the case when $$k$$ is odd. Case II : When $$k$$ is even, then $$k + 1$$ is odd.
Now, $$P\left( {k + 1} \right):{S_{k + 1}} = {1^2} + 2 \times {2^2} + ..... + 2 \cdot {k^2} + {\left( {k + 1} \right)^2}$$
$$ = \frac{{k{{\left( {k + 1} \right)}^2}}}{2} + {\left( {k + 1} \right)^2} = \frac{{{{\left( {k + 1} \right)}^2}\left( {\left( {k + 1} \right) + 1} \right)}}{2}$$
Therefore, $$P\left( {k + 1} \right)$$ is true, whenever $$P\left( {k} \right)$$ is true for the case when $$k$$ is even.
Thus, $$P\left( {k + 1} \right)$$ is true whenever $$P\left( {k} \right)$$ is true for any natural number $$k.$$ Hence, $$P\left( {n} \right)$$ true for all natural numbers $$n.$$
29.
For every positive integral value of $$n, 3^n > n^3$$ when
A
$$n > 2$$
B
$$n \geqslant 3$$
C
$$n \geqslant 4$$
D
$$n < 4$$
Answer :
$$n \geqslant 4$$
Check through option, the condition $$3^n > n^3$$ is true when $$n \geqslant 4.$$
30.
Let $$S\left( k \right) = 1 + 3 + 5 + ...... + \left( {2k - 1} \right) = 3 + {k^2}.$$ Then which of the following is true
A
Principle of mathematical induction can be used to prove the formula
B
$$S\left( k \right) \Rightarrow S\left( {k + 1} \right)$$