Mathematical Reasoning MCQ Questions & Answers in Algebra | Maths

Learn Mathematical Reasoning MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

21. Let $$p$$ and $$q$$ be any two logical statements and $$r:p \to \left( { \sim p \vee q} \right).$$    If $$r$$ has a truth value $$F,$$ then the truth values of $$p$$ and $$q$$ are respectively :

A $$F , F$$
B $$T , T$$
C $$T , F$$
D $$F , T$$
Answer :   $$T , F$$

22. Consider the following statements
$$P$$ : Suman is brilliant
$$Q$$ : Suman is rich
$$R$$ : Suman is honest
The negation of the statement “Suman is brilliant and dishonest if and only if Suman is rich” can be expressed as

A $$ \sim \left( {Q \leftrightarrow \left( {P \wedge \sim R} \right)} \right)$$
B $$ \sim Q \leftrightarrow \sim P \wedge R$$
C $$ \sim \left( {P \wedge \sim R} \right) \leftrightarrow Q$$
D $$ \sim P \wedge \left( {Q \leftrightarrow \sim R} \right)$$
Answer :   $$ \sim \left( {Q \leftrightarrow \left( {P \wedge \sim R} \right)} \right)$$

23. Negation of the conditional : “If it rains, I shall go to school” is

A It rains and I shall go to school
B It rains and I shall not go to school
C It does not rains and I shall go to school
D None of these
Answer :   It rains and I shall not go to school

24. In the truth table for the statement $$\left( {p \to q} \right) \leftrightarrow \left( { \sim p \vee q} \right),$$     the last column has the truth value in the following order is

A TTFF
B FFFF
C TTTT
D FTFT
Answer :   TTTT

25. The statement $$ \sim \left( {p \leftrightarrow \sim q} \right)$$   is:

A a tautology
B a fallacy
C equivalent to $${p \leftrightarrow q}$$
D equivalent to $$ \sim p \leftrightarrow q$$
Answer :   equivalent to $${p \leftrightarrow q}$$

26. Statement - 1 : $$ \sim \left( {p \leftrightarrow \sim q} \right)$$   is equivalent to $${p \leftrightarrow q}.$$
Statement - 2 : $$ \sim \left( {p \leftrightarrow \sim q} \right)$$   is a tautology

A Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1.
B Statement - 1 is true, Statement - 2 is false.
C Statement - 1 is false, Statement - 2 is true.
D Statement - 1 is true, Statement - 2 is true, Statement - 2 is a correct explanation for statement - 1
Answer :   Statement - 1 is true, Statement - 2 is false.

27. For any two statements $$p$$ and $$q,$$ the negation of the expression $${p \vee \left( { \sim p \wedge q} \right)}$$   is:

A $$ \sim p \wedge \sim q$$
B $$p \wedge q$$
C $$p \leftrightarrow q$$
D $$ \sim p \vee \sim q$$
Answer :   $$ \sim p \vee \sim q$$

28. Which of the following is the inverse of the proposition : “If a number is a prime then it is odd.”

A If a number is not a prime then it is odd
B If a number is not a prime then it is not odd
C If a number is not odd then it is not a prime
D If a number is not odd then it is a prime
Answer :   If a number is not a prime then it is not odd

29. If the Boolean expression $$\left( {p \oplus q} \right) \wedge \left( { \sim p \odot q} \right)$$    is equivalent to $$p \wedge q,$$  where $$ \oplus , \odot \in \left\{ { \wedge , \vee } \right\}$$   then the ordered pair $$\left( { \oplus , \odot } \right)$$  is:

A $$\left( { \vee , \wedge } \right)$$
B $$\left( { \vee , \vee } \right)$$
C $$\left( { \wedge , \vee } \right)$$
D $$\left( { \wedge , \wedge } \right)$$
Answer :   $$\left( { \wedge , \vee } \right)$$

30. The statement $$p \to \left( {q \to p} \right)$$   is equivalent to

A $$p \to \left( {p \to q} \right)$$
B $$p \to \left( {p \vee q} \right)$$
C $$p \to \left( {p \wedge q} \right)$$
D $$p \to \left( {p \leftrightarrow q} \right)$$
Answer :   $$p \to \left( {p \vee q} \right)$$