Mathematical Reasoning MCQ Questions & Answers in Algebra | Maths

Learn Mathematical Reasoning MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

41. If $$p$$ is any statement, then which of the following is a tautology ?

A $$p \wedge f$$
B $$p \vee f$$
C $$p \vee \left( { \sim p} \right)$$
D $$p \wedge t$$
Answer :   $$p \vee \left( { \sim p} \right)$$

42. Which of the following is always true ?

A $$\left( { \sim p \, \vee \sim q} \right) \equiv \left( {p \wedge q} \right)$$
B $$\left( {p \to q} \right) \equiv \left( { \sim q \to \, \sim p} \right)$$
C $$ \sim \left( {p \to \, \sim q} \right) \equiv \left( {p \, \wedge \sim q} \right)$$
D $$ \sim \left( {p \leftrightarrow q} \right) \equiv \left( {p \to q} \right) \to \left( {q \to p} \right)$$
Answer :   $$\left( {p \to q} \right) \equiv \left( { \sim q \to \, \sim p} \right)$$

43. Which of the following is a statement ?

A Open the door
B Do your home work
C Switch on the fan
D Two plus two is four
Answer :   Two plus two is four

44. Truth value of the statement 'It is false that $$3 + 3 = 33$$   or $$1 + 2 = 12$$  ' is

A $$T$$
B $$F$$
C both $$T$$ and $$F$$
D $$54$$
Answer :   $$T$$

45. The inverse of the statement $$\left( {p \, \wedge \sim q} \right) \to r{\text{ is}}$$

A $$ \sim \left( {p \, \vee \sim q} \right) \to \, \sim r$$
B $$\left( { \sim p \wedge q} \right) \to \, \sim r$$
C $$ \left( { \sim p \vee q} \right) \to \, \sim r$$
D None of these
Answer :   $$ \left( { \sim p \vee q} \right) \to \, \sim r$$

46. If $$p \Rightarrow \left( { \sim p \vee q} \right)$$    is false, the truth values of $$p$$ and $$q$$ are respectively

A $$F , T$$
B $$F , F$$
C $$T , T$$
D $$T , F$$
Answer :   $$T , F$$

47. The Boolean Expression $$\left( {p \wedge \sim q} \right) \vee q \vee \left( { \sim p \wedge q} \right)$$     is equivalent to:

A $$p \vee q$$
B $$p \vee \sim q$$
C $$ \sim p \wedge q$$
D $$p \cup q$$
Answer :   $$p \vee q$$

48. The contrapositive of the inverse of $$p \Rightarrow \, \sim q{\text{ is}}$$

A $$ \sim q \Rightarrow p$$
B $$p \Rightarrow q$$
C $$ \sim q \Rightarrow \, \sim p$$
D $$ \sim p \Rightarrow \, \sim q$$
Answer :   $$ \sim q \Rightarrow p$$

49. Which of the following is true ?

A $$p \Rightarrow q \equiv \,\, \sim p \Rightarrow \, \sim q$$
B $$ \sim \left( { p \Rightarrow \, \sim q} \right) \equiv \,\, \sim p \wedge q$$
C $$ \sim \left( { \sim p \Rightarrow \, \sim q} \right) \equiv \,\, \sim p \wedge q$$
D $$ \sim \left( { \sim p \Leftrightarrow q} \right) \equiv \left[ { \sim \left( {p \Rightarrow q} \right) \wedge \sim \left( {q \Rightarrow p} \right)} \right]$$
Answer :   $$ \sim \left( { \sim p \Rightarrow \, \sim q} \right) \equiv \,\, \sim p \wedge q$$

50. Consider the two statements $$P :$$ He is intelligent and $$Q :$$ He is strong. Then the symbolic form of the statement ‘‘It is not true that he is either intelligent or strong’’ is

A $${ \sim P \vee Q}$$
B $${ \sim P \wedge \sim Q}$$
C $${ \sim P \wedge Q}$$
D $$ \sim \left( {P \vee Q} \right)$$
Answer :   $$ \sim \left( {P \vee Q} \right)$$