Mathematical Reasoning MCQ Questions & Answers in Algebra | Maths
Learn Mathematical Reasoning MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
41.
If $$p$$ is any statement, then which of the following is a tautology ?
A
$$p \wedge f$$
B
$$p \vee f$$
C
$$p \vee \left( { \sim p} \right)$$
D
$$p \wedge t$$
Answer :
$$p \vee \left( { \sim p} \right)$$
Whatever the truth value of $$p$$ may be, $$p \vee \left( { \sim p} \right)$$ is always true. Hence, $$p \vee \left( { \sim p} \right)$$ is a tautology.
42.
Which of the following is always true ?
A
$$\left( { \sim p \, \vee \sim q} \right) \equiv \left( {p \wedge q} \right)$$
The inverse of the proposition $$\left( {p \, \wedge \sim q} \right) \to r{\text{ is }} \sim \left( {p \, \wedge \sim q} \right) \to \, \sim r$$
$$\eqalign{
& \equiv \,\, \sim p \, \vee \sim \left( { \sim q} \right) \to \, \sim r \cr
& \equiv \,\, \sim p \vee q \to \, \sim r \cr} $$
46.
If $$p \Rightarrow \left( { \sim p \vee q} \right)$$ is false, the truth values of $$p$$ and $$q$$ are respectively
A
$$F , T$$
B
$$F , F$$
C
$$T , T$$
D
$$T , F$$
Answer :
$$T , F$$
$$p \Rightarrow \left( { \sim p \vee q} \right)$$ is false means $$p$$ is true and $${ \sim p \vee q}$$ is false.
$$ \Rightarrow p$$ is true and both $$\sim p$$ and $$q$$ are false
$$ \Rightarrow p$$ is true and $$q$$ is false.
47.
The Boolean Expression $$\left( {p \wedge \sim q} \right) \vee q \vee \left( { \sim p \wedge q} \right)$$ is equivalent to:
48.
The contrapositive of the inverse of $$p \Rightarrow \, \sim q{\text{ is}}$$
A
$$ \sim q \Rightarrow p$$
B
$$p \Rightarrow q$$
C
$$ \sim q \Rightarrow \, \sim p$$
D
$$ \sim p \Rightarrow \, \sim q$$
Answer :
$$ \sim q \Rightarrow p$$
The inverse of $$p \Rightarrow \, \sim q{\text{ is }} \sim p \Rightarrow q.$$
The contrapositive of $$ \sim p \Rightarrow q{\text{ is }} \sim q \Rightarrow p.$$
[ $$\because $$ contrapositive of $$p \Rightarrow q{\text{ is }} \sim q \Rightarrow \, \sim p$$ ].
49.
Which of the following is true ?
A
$$p \Rightarrow q \equiv \,\, \sim p \Rightarrow \, \sim q$$
B
$$ \sim \left( { p \Rightarrow \, \sim q} \right) \equiv \,\, \sim p \wedge q$$
C
$$ \sim \left( { \sim p \Rightarrow \, \sim q} \right) \equiv \,\, \sim p \wedge q$$
50.
Consider the two statements $$P :$$ He is intelligent and $$Q :$$ He is strong. Then the symbolic form of the statement ‘‘It is not true that he is either intelligent or strong’’ is
A
$${ \sim P \vee Q}$$
B
$${ \sim P \wedge \sim Q}$$
C
$${ \sim P \wedge Q}$$
D
$$ \sim \left( {P \vee Q} \right)$$
Answer :
$$ \sim \left( {P \vee Q} \right)$$
Given : $$P :$$ He is intelligent.
$$Q =$$ He is strong.
Symbolic form of
“It is not true that he is either intelligent or strong” is $$ \sim \left( {P \vee Q} \right)$$