Indefinite Integration MCQ Questions & Answers in Calculus | Maths

Learn Indefinite Integration MCQ questions & answers in Calculus are available for students perparing for IIT-JEE and engineering Enternace exam.

11. The integral $$\int {\left( {1 + x - \frac{1}{x}} \right){e^{x\, + \,\frac{1}{x}}}dx} $$      is equal to-

A $$\left( {x + 1} \right){e^{x\, + \,\frac{1}{x}}} + C$$
B $$ - x{e^{x\, + \,\frac{1}{x}}} + C$$
C $$\left( {x - 1} \right){e^{x\, + \,\frac{1}{x}}} + C$$
D $$x{e^{x\, + \,\frac{1}{x}}} + C$$
Answer :   $$x{e^{x\, + \,\frac{1}{x}}} + C$$

12. If $$\int {\frac{{dx}}{{x\left( {{x^n} + 1} \right)}} = A\,\log \left| {\frac{{{x^n} + 1}}{{{x^n}}}} \right| + B,\,B\, \in {\bf{R}}.} $$
Then :

A $$A = \frac{1}{2}$$
B $$A = - 1$$
C $$A = - \frac{1}{n}$$
D $$A = \frac{1}{{2n}}$$
Answer :   $$A = - \frac{1}{n}$$

13. What is $$\int {\frac{{\log \,x}}{{{{\left( {1 + \log \,x} \right)}^2}}}dx} $$     equal to ?
Where $$c$$ is a constant

A $$\frac{1}{{{{\left( {1 + \log \,x} \right)}^3}}} + c$$
B $$\frac{1}{{{{\left( {1 + \log \,x} \right)}^2}}} + c$$
C $$\frac{x}{{\left( {1 + \log \,x} \right)}} + c$$
D $$\frac{x}{{{{\left( {1 + \log \,x} \right)}^2}}} + c$$
Answer :   $$\frac{x}{{\left( {1 + \log \,x} \right)}} + c$$

14. If $$\int {f\left( x \right)dx} = g\left( x \right) + c,$$     then $$\int {{f^{ - 1}}\left( x \right)dx} $$   is equal to :

A $$x{f^{ - 1}}\left( x \right) + C$$
B $$f\left( {{g^{ - 1}}\left( x \right)} \right) + C$$
C $$x{f^{ - 1}}\left( x \right) - g\left( {{f^{ - 1}}\left( x \right)} \right) + C$$
D $${g^{ - 1}}\left( x \right) + C$$
Answer :   $$x{f^{ - 1}}\left( x \right) - g\left( {{f^{ - 1}}\left( x \right)} \right) + C$$

15. $$\int {{x^x}\left( {1 + \log \,x} \right)dx} $$     is equal to :

A $${x^x}\log \,x + k$$
B $${e^{{x^x}}} + k$$
C $${x^x} + k$$
D none of these
Answer :   $${x^x} + k$$

16. If $$\int {\frac{{dx}}{{{x^{22}}\left( {{x^7} - 6} \right)}} = A\left\{ {\ln {{\left( p \right)}^6} + 9{p^2} - 2{p^3} - 18p} \right\} + c} ,$$           then :

A $$A = \frac{1}{{9072}},\,\,p = \left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)$$
B $$A = \frac{1}{{54432}},\,\,p = \left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)$$
C $$A = \frac{1}{{54432}},\,\,p = \left( {\frac{{{x^7}}}{{{x^7} - 6}}} \right)$$
D $$A = \frac{1}{{9072}},\,\,p = {\left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)^{ - 1}}$$
Answer :   $$A = \frac{1}{{54432}},\,\,p = \left( {\frac{{{x^7} - 6}}{{{x^7}}}} \right)$$

17. If $$\int {x\,\log \left( {1 + \frac{1}{x}} \right)dx} = f\left( x \right)\log \left( {x + 1} \right) + g\left( x \right){x^2} + Lx + C,$$            then :

A $$f\left( x \right) = \frac{1}{2}{x^2}$$
B $$g\left( x \right) = \log \,x$$
C $$L = 1$$
D none of these
Answer :   none of these

18. $$\int {\frac{{dx}}{{\cos \,x + \sqrt 3 \sin \,x}}} $$     is equal to :

A $$\log \,\tan \left( {\frac{x}{2} + \frac{\pi }{3}} \right) + k$$
B $$\log \,\tan \left( {\frac{x}{2} - \frac{\pi }{3}} \right) + k$$
C $$\frac{1}{2}\log \,\tan \left( {\frac{x}{2} + \frac{\pi }{3}} \right) + k$$
D none of these
Answer :   $$\frac{1}{2}\log \,\tan \left( {\frac{x}{2} + \frac{\pi }{3}} \right) + k$$

19. If $$\int {g\left( x \right)dx = g\left( x \right)} ,$$     then $$\int {g\left( x \right)\left\{ {f\left( x \right) + f'\left( x \right)} \right\}dx} $$      is equal to :

A $$g\left( x \right)f\left( x \right) - g\left( x \right)f'\left( x \right) + C$$
B $$g\left( x \right)f'\left( x \right) + C$$
C $$g\left( x \right)f\left( x \right) + C$$
D $$g\left( x \right){f^2}\left( x \right) + C$$
Answer :   $$g\left( x \right)f\left( x \right) + C$$

20. What is $$\int {{{\sec }^n}x\,\tan \,x\,dx} $$     equal to ?
Where $$'c’$$ is a constant of integration.

A $$\frac{{{{\sec }^n}x}}{n} + c$$
B $$\frac{{{{\sec }^{n - 1}}x}}{{n - 1}} + c$$
C $$\frac{{{{\tan }^n}x}}{n} + c$$
D $$\frac{{{{\tan }^{n - 1}}x}}{{n - 1}} + c$$
Answer :   $$\frac{{{{\sec }^n}x}}{n} + c$$