Hyperbola MCQ Questions & Answers in Geometry | Maths

Learn Hyperbola MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.

21. What are the points of intersection of the curve $$4{x^2} - 9{y^2} = 1$$   with its conjugate axis ?

A $$\left( {\frac{1}{2},\,0} \right){\text{ and }}\left( { - \frac{1}{2},\,0} \right)$$
B $$\left( {0,\,2} \right){\text{ and }}\left( {0,\, - 2} \right)$$
C $$\left( {0,\,3} \right){\text{ and }}\left( {0,\, - 3} \right)$$
D No such point exists
Answer :   No such point exists

22. If in a hyperbola the eccentricity is $$\sqrt 3 ,$$  and the distance between the foci is 9 then the equation of the hyperbola in the standard form is :

A $$\frac{{{x^2}}}{{{{\left( {\frac{{\sqrt 3 }}{2}} \right)}^2}}} - \frac{{{y^2}}}{{{{\left( {\sqrt {\frac{3}{2}} } \right)}^2}}} = 1$$
B $$\frac{{{x^2}}}{{{{\left( {\frac{{3\sqrt 3 }}{2}} \right)}^2}}} - \frac{{{y^2}}}{{{{\left( {\frac{{3\sqrt 3 }}{2}} \right)}^2}}} = 1$$
C $$\frac{{{x^2}}}{{{{\left( {\frac{{3\sqrt 3 }}{2}} \right)}^2}}} - \frac{{{y^2}}}{{{{\left( {\frac{{3\sqrt 2 }}{2}} \right)}^2}}} = 1$$
D none of these
Answer :   $$\frac{{{x^2}}}{{{{\left( {\frac{{3\sqrt 3 }}{2}} \right)}^2}}} - \frac{{{y^2}}}{{{{\left( {\frac{{3\sqrt 3 }}{2}} \right)}^2}}} = 1$$

23. If any point on a hyperbola has the coordinates $$\left( {5\tan \,\phi ,\,4\sec \,\phi } \right)$$    then the eccentricity of the hyperbola is :

A $$\frac{5}{4}$$
B $$\frac{{\sqrt {41} }}{5}$$
C $$\frac{{25}}{{16}}$$
D $$\frac{{\sqrt {41} }}{4}$$
Answer :   $$\frac{{\sqrt {41} }}{4}$$

24. For hyperbola $$\frac{{{x^2}}}{{{{\cos }^2}\alpha }} - \frac{{{y^2}}}{{{{\sin }^2}\alpha }} = 1,$$     which of the following remains constant with change in $$'\alpha \,'$$

A abscissae of vertices
B abscissae of foci
C eccentricity
D directrix
Answer :   abscissae of foci

25. The eccentricity of the hyperbola whose latus rectum is $$8$$ and conjugate axis is equal to half the distance between the foci is :

A $$\frac{4}{3}$$
B $$\frac{4}{{\sqrt 3 }}$$
C $$\frac{2}{{\sqrt 3 }}$$
D none of these
Answer :   $$\frac{2}{{\sqrt 3 }}$$

26. Let $$P\left( {a\,\sec \,\theta ,\,b\,\tan \,\theta } \right)$$     and $$Q\left( {a\,\sec \,\phi ,\,b\,\tan \,\phi } \right),$$     where $$\theta + \phi = \frac{\pi }{2},$$   be two points on the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1.$$   If $$\left( {h,\,k} \right)$$  is the point of intersection of the normals at $$P$$ and $$Q,$$ then $$kz$$  is equal to :

A $$\frac{{{a^2} + {b^2}}}{a}$$
B $$ - \left( {\frac{{{a^2} + {b^2}}}{a}} \right)$$
C $$\frac{{{a^2} + {b^2}}}{b}$$
D $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$
Answer :   $$ - \left( {\frac{{{a^2} + {b^2}}}{b}} \right)$$

27. If the coordinates of four concyclic points on the rectangular hyperbola $$xy = {c^2}$$  are $$\left( {c{t_{\text{i}}},\,\frac{c}{{{t_{\text{i}}}}}} \right),\,{\text{i}} = 1,\,2,\,3,\,4$$      then :

A $${t_1}{t_2}{t_3}{t_4} = - 1$$
B $${t_1}{t_2}{t_3}{t_4} = 1$$
C $${t_1}{t_3} = {t_2}{t_4}$$
D $${t_1} + {t_2} + {t_3} + {t_4} = {c^2}$$
Answer :   $${t_1}{t_2}{t_3}{t_4} = 1$$

28. The hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$    passes through the point $$\left( {3\sqrt 5 ,\,1} \right)$$  and the length of its latus rectum is $$\frac{4}{3}$$ units. The length of the conjugate axis is :

A $$2$$ units
B $$3$$ units
C $$4$$ units
D $$5$$ units
Answer :   $$4$$ units

29. The eccentricity of the hyperbola whose length of the latus rectum is equal to $$8$$ and the length of its conjugate axis is equal to half of the distance between its foci, is :

A $$\frac{2}{{\sqrt 3 }}$$
B $$\sqrt 3 $$
C $$\frac{4}{3}$$
D $$\frac{4}{{\sqrt 3 }}$$
Answer :   $$\frac{2}{{\sqrt 3 }}$$

30. If $$x=9$$  is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$   then the equation of the corresponding pair of tangents is :

A $$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B $$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C $$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D $$9{x^2} - 8{y^2} + 18x + 9 = 0$$
Answer :   $$9{x^2} - 8{y^2} - 18x + 9 = 0$$