Learn Locus MCQ questions & answers in Geometry are available for students perparing for IIT-JEE and engineering Enternace exam.
11.
The locus of the point of intersection of two tangents of the ellipse $$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$$ which are
inclined at angles $${\theta _1}$$ and $${\theta _2}$$ with the major axis such that $${\tan ^2}{\theta _1} + {\tan ^2}{\theta _2}$$ is constant, is :
Given that $$\frac{{{x^2}}}{{1 - r}} - \frac{{{y^2}}}{{1 + r}} = 1,\,\,\,r > 1$$
$$\eqalign{
& {\text{As }}r > 1 \cr
& \therefore 1 - r < 0{\text{ and }}1 + r > 0 \cr
& \therefore {\text{Let }}1 - r = - {a^2},\,\,\,1 + r = {b^2},\,\,{\text{then we get}} \cr
& \frac{{{x^2}}}{{ - {a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1\,\,\,\,\,\,\,\,\, \Rightarrow \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = - 1 \cr} $$
which is not possible for any real values of $$x$$ and $$y.$$
13.
The locus of a point $$P\left( {\alpha ,\,\beta } \right)$$ moving under the condition that the line $$y = \alpha x + \beta $$ is a tangent to the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$ is :
A
an ellipse
B
a circle
C
a parabola
D
a hyperbola
Answer :
a hyperbola
Tangent to the hyperbola $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$$ is $$y = mx \pm \sqrt {{a^2}{m^2} - {b^2}} $$
Given that $$y = \alpha x + \beta $$ is the tangent of hyperbola
$$\eqalign{
& \Rightarrow m = \alpha {\text{ and }}{a^2}{m^2} - {b^2} = {\beta ^2} \cr
& \therefore {a^2}{\alpha ^2} - {b^2} = {\beta ^2} \cr} $$
Locus is $${a^2}{x^2} - {y^2} = {b^2}$$ which is hyperbola.
14.
The locus of the mid-point of the line segment joining the focus to a moving point on the parabola $${y^2} = 4ax$$ is another parabola with directrix :
A
$$x = - a$$
B
$$x = - \frac{a}{2}$$
C
$$x = 0$$
D
$$x = \frac{a}{2}$$
Answer :
$$x = 0$$
If $$\left( {h,\,k} \right)$$ is the mid point of line joining focus $$\left( {a,\,0} \right)$$ and $$Q\left( {a{t^2},\,2at} \right)$$ on parabola then $$h = \frac{{a + a{t^2}}}{2},\,k = at$$
Eliminating $$t,$$ we get $$2h = a + a\left( {\frac{{{k^2}}}{{{a^2}}}} \right)$$
$$ \Rightarrow {k^2} = a\left( {2h - a} \right)\,\,\,\, \Rightarrow {k^2} = 2a\left( {h - \frac{a}{2}} \right)$$
$$\therefore $$ Locus of $$\left( {h,\,k} \right)$$ is $${y^2} = 2a\left( {x - \frac{a}{2}} \right)$$
whose directrix is $$\left( {x - \frac{a}{2}} \right) = - \frac{a}{2}$$
$$ \Rightarrow x = 0$$
We have $$2{x^2} + 3{y^2} - 8x - 18y + 35 = k$$
$$ \Rightarrow 2{\left( {x - 2} \right)^2} + 3{\left( {y - 3} \right)^2} = k$$
For $$k=0,$$ we get $$ \Rightarrow 2{\left( {x - 2} \right)^2} + 3{\left( {y - 3} \right)^2} = 0$$ which represents the point $$\left( {2,\,3} \right).$$
16.
A point moves such that the square of its distance from a straight line is equal to the difference between the square of its distance from the centre of a circle and the square of the radius of the circle. The locus of the point is :
A
a straight line at right angle to the given line
B
a circle concentric with the given circle
C
a parabola with its axis parallel to the given line
D
a parabola with its axis perpendicular to the given line
Answer :
a parabola with its axis perpendicular to the given line
Let the given line be the $$y$$-axis and the circle to have the equation $${x^2} + {y^2} + 2gx + 2fy + c = 0$$
then according to given condition
$$\eqalign{
& {x^2} = {\left( {x + g} \right)^2} + {\left( {y + f} \right)^2} - \left( {{g^2} + {f^2} - c} \right) \cr
& \Rightarrow {\left( {y + f} \right)^2} = - 2g\left( {x - \frac{{{f^2} - c}}{{2g}}} \right), \cr} $$
which represents a parabola with its axis $$ \bot $$ to $$y$$-axis.
17.
Two sets $$A$$ and $$B$$ are as under :
$$\eqalign{
& A = \left\{ {\left( {a,\,b} \right) \in R \times R:\left| {a - 5} \right| < 1{\text{ and }}\left| {b - 5} \right| < 1} \right\}; \cr
& B = \left\{ {\left( {a,\,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \leqslant 36} \right\}. \cr} $$
Then :
A
$$A \subset B$$
B
$$A \cap B = \phi \,\,\left( {{\text{an empty set}}} \right)$$
C
$${\text{neither }}A \subset B{\text{ nor }}B \subset A$$
D
$$B \subset A$$
Answer :
$$A \subset B$$
$$A = \left\{ {\left( {a,\,b} \right) \in R \times R:\left| {a - 5} \right| < 1,{\text{ }}\left| {b - 5} \right| < 1} \right\}$$
Let $$a-5=x, \,\,b-5=y$$
Set $$A$$ contains all points inside $$\left| x \right| < 1,\,\left| y \right| < 1$$
$$B = \left\{ {\left( {a,\,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \leqslant 36} \right\}$$
Set $$B$$ contains all points inside or on
$$\frac{{{{\left( {x - 1} \right)}^2}}}{9} + \frac{{{y^2}}}{4} = 1$$
$$\therefore \left( { \pm 1,\, \pm 1} \right)$$ lies inside the ellipse.
Hence, $$A \subset B$$