The heat flowrate is same

$$\eqalign{
& \therefore \,\,\frac{{KA\left( {400 - T} \right)}}{\ell } = \frac{{2\,KA\left( {T - 10} \right)}}{\ell } \cr
& \therefore \,\,T = {140^ \circ }C \cr} $$
The temperature gradient access $$Pd$$ is
$$\eqalign{
& \frac{{dT}}{{dx}} = \frac{{140 - 10}}{1} \cr
& \therefore \,\,dt = 130\,dx \cr} $$
Therefore change temperature at a cross - section $$M$$ distant $$'x'$$ from $$P$$ is
$$\eqalign{
& dl = dx\alpha \,\Delta T \cr
& = dx\,\alpha \left( {130x} \right) \cr
& \therefore \int {dl = 130\alpha \int\limits_0^1 {xdx} } \cr
& \therefore \,\,\Delta l = 130 \times 1.2 \times {10^{ - 5}} \times \frac{1}{2} \cr
& = 78 \times {10^{ - 5}}m \cr} $$