Radioactivity MCQ Questions & Answers in Modern Physics | Physics

Learn Radioactivity MCQ questions & answers in Modern Physics are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.

41. A nucleus disintegrated into two nuclear parts which have their velocities in the ratio of 2 : 1. The ratio of their nuclear sizes will be

A $${3^{\frac{1}{2}}}:1$$
B $$1:{2^{\frac{1}{3}}}$$
C $${2^{\frac{1}{3}}}:1$$
D $$1:{3^{\frac{1}{2}}}$$
Answer :   $$1:{2^{\frac{1}{3}}}$$

42. The masses of neutron and proton are $$1.0087\,a.m.u.$$    and $$1.0073\,a.m.u.$$    respectively. If the neutrons and protons combine to form a helium nucleus (alpha particles) of mass $$4.0015\,a.m.u$$    the binding energy of the helium nucleus will be
$$\left( {1\,a.m.u = 931\,MeV} \right)$$

A $$28.4\,MeV$$
B $$20.8\,MeV$$
C $$27.3\,MeV$$
D $$14.2\,MeV$$
Answer :   $$28.4\,MeV$$

43. A radioactive nucleus (initial mass number $$A$$ and atomic number $$Z$$ emits 3 $$\alpha $$ - particles and 2 positrons. The ratio of number of neutrons to that of protons in the final nucleus will be

A $$\frac{{A - Z - 8}}{{Z - 4}}$$
B $$\frac{{A - Z - 4}}{{Z - 8}}$$
C $$\frac{{A - Z - 12}}{{Z - 4}}$$
D $$\frac{{A - Z - 4}}{{Z - 2}}$$
Answer :   $$\frac{{A - Z - 4}}{{Z - 8}}$$

44. The element curium $$_{96}C{m^{248}}$$  has a mean life of $${10^{13}}s.$$  Its primary decay modes are spontaneous fission and $$\alpha $$-decay, the former with a probability of $$8\% $$  and the later with a probability of $$92\% .$$  Each fission releases $$200\,MeV$$  of energy. The masses involved in $$\alpha $$ decay are as follows:
$$_{96}C{m^{248}} = 248.072220\,u,{\,_{94}}P{u^{244}} = 244.064100\,u$$          and $$_2H{e^4} = 4.002603\,u$$
Calculate the power output from a sample of $${10^{20}}Cm$$   atoms.
$$\left( {1u = 931\,MeV/{c^2}} \right).$$

A $$1.6 \times {10^{ - 5}}W$$
B $$2.6 \times {10^{ - 3}}W$$
C $$3.3 \times {10^{ - 5}}W$$
D $$5.1 \times {10^{ - 3}}W$$
Answer :   $$3.3 \times {10^{ - 5}}W$$

45. If $${N_0}$$ is the original mass of the substance of half-life period $${t_{\frac{1}{2}}} = 5$$  years, then the amount of substance left after 15 years is

A $$\frac{{{N_0}}}{8}$$
B $$\frac{{{N_0}}}{{16}}$$
C $$\frac{{{N_0}}}{2}$$
D $$\frac{{{N_0}}}{4}$$
Answer :   $$\frac{{{N_0}}}{8}$$

46. One gram of a radioactive sample of half-life $$10\,\min$$  is sealed in a capsule at time $$t= 0.$$  Amount of sample decayed upto $$5\,\min$$  is

A $$0.293\,g$$
B $$0.5\,g$$
C $$0.25\,g$$
D $$0.707\,g$$
Answer :   $$0.293\,g$$

47. A sample of radioactive elements contains $$4 \times {10^{10}}$$  active nuclei. If half-life of element is 10 days, then the number of decayed nuclei after 30 days is

A $$0.5 \times {10^{10}}$$
B $$2 \times {10^{10}}$$
C $$3.5 \times {10^{10}}$$
D $$1 \times {10^{10}}$$
Answer :   $$3.5 \times {10^{10}}$$

48. A nucleus $$_Z^AX$$  has mass represented by $$m\left( {A,Z} \right).$$  lf $${m_p}$$ and $${m_n}$$ denote the mass of proton and neutron respectively and $$BE$$  the binding energy (in $$MeV$$ ), then

A $$BE = \left[ {m\left( {A,Z} \right) - Z{m_p} - \left( {A - Z} \right){m_n}} \right]{c^2}$$
B $$BE = \left[ {Z{m_p} + \left( {A - Z} \right){m_n} - m\left( {A,Z} \right)} \right]{c^2}$$
C $$BE = \left[ {Z{m_p} + A{m_n} - m\left( {A,Z} \right)} \right]{c^2}$$
D $$BE = m\left( {A,Z} \right) - Z{m_p} - \left( {A - Z} \right){m_n}$$
Answer :   $$BE = \left[ {Z{m_p} + \left( {A - Z} \right){m_n} - m\left( {A,Z} \right)} \right]{c^2}$$

49. The activity of a radioactive sample is measured as $${N_0}$$ counts per minute at $$t= 0$$  and $$\frac{{{N_0}}}{e}$$ counts per minute at $$t= 5$$  minutes. The time (in minutes) at which the activity reduces to half its value is

A $$\frac{{{{\log }_e}2}}{5}$$
B $$\frac{5}{{{{\log }_e}2}}$$
C $$5{\log _{10}}2$$
D $$5{\log _e}2$$
Answer :   $$5{\log _e}2$$

50. At a specific instant emission of radioactive compound is deflected in a magnetic field. The compound can emit

A electrons
B protons
C $$H{e^{2 + }}$$
D neutrons
Answer :   electrons