Given, $${\mu _g} = 1.5$$

$${\mu _{{\text{oil}}}} = 1.7 \Rightarrow R = 20\,cm$$
From Lens Maker's formula for the plano convex lens
$$\eqalign{
& \frac{1}{f} = \left( {\mu - 1} \right)\left[ {\frac{1}{{{R_1}}} - \frac{1}{{{R_2}}}} \right] \cr
& {\text{Here,}}\,\,{R_1} = R \cr} $$
and for plane surface $${R_2} = \infty $$
$$\therefore \frac{1}{{{f_{{\text{lens}}}}}} = \left( {1.5 - 1} \right)\left( {\frac{1}{R} - 0} \right) \Rightarrow \frac{1}{{{f_{{\text{lens}}}}}} = \frac{{0.5}}{R}$$
When the intervening medium is filled with oil, then focal length of the concave lens formed by the oil
$$\eqalign{
& \frac{1}{{{f_{{\text{concave}}}}}} = \left( {1.7 - 1} \right)\left( { - \frac{1}{R} - \frac{1}{R}} \right) \cr
& = - 0.7 \times \frac{2}{R} = \frac{{ - 1.4}}{R} \cr} $$
Here, we have two concave surfaces
$$\eqalign{
& {\text{So,}}\,\,\frac{1}{{{f_{{\text{eq}}}}}} = 2 \times \frac{1}{f} + \frac{1}{f} \cr
& = 2 \times \frac{{0.5}}{R} + \left( {\frac{{ - 1.4}}{R}} \right) = \frac{1}{R} - \frac{{1.4}}{R} = - \frac{{0.4}}{R} \cr
& \therefore {f_{{\text{eq}}}} = - \frac{R}{{0.4}} = - \frac{{20}}{{0.4}} = - 50\,cm \cr} $$