Co - ordination Compounds MCQ Questions & Answers in Inorganic Chemistry | Chemistry
Learn Co - ordination Compounds MCQ questions & answers in Inorganic Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.
141.
Which of the following will exhibit maximum ionic conductivity ?
A
$${K_4}\left[ {Fe{{\left( {CN} \right)}_6}} \right]$$
B
$$\left[ {Co{{\left( {N{H_3}} \right)}_6}} \right]C{l_3}$$
C
$$\left[ {Cu{{\left( {N{H_3}} \right)}_4}} \right]C{l_2}$$
D
$$\left[ {Ni{{\left( {CO} \right)}_4}} \right]$$
Ionic conductivity depends upon the number of ions produced in aqueous solution. $${K_4}\left[ {Fe{{\left( {CN} \right)}_6}} \right]$$ produces maximum number of ions, i.e. 5.
$$\underbrace {4{K^ + } + {{\left[ {Fe{{\left( {CN} \right)}_6}} \right]}^{4 - }}}_{{\text{Total 5 ions}}}$$
$$\left[ {Co{{\left( {N{H_3}} \right)}_6}} \right]C{l_3}$$ produces $$3,\left[ {Cu{{\left( {N{H_3}} \right)}_4}} \right]C{l_2}$$ produces 3 and $$\left[ {Ni{{\left( {Co} \right)}_4}} \right]$$ gives zero ions.
142.
Which of the following complexes is used to be as an anticancer agent ?
A
$$Mer - \left[ {Co{{\left( {N{H_3}} \right)}_3}C{l_3}} \right]$$
B
$$Cis - \left[ {PtC{l_2}{{\left( {N{H_3}} \right)}_2}} \right]$$
$$Cis$$ - platin is known as anticancer agent. The formula of $$cis$$ -
platin is $$cis - \left[ {PtC{l_2}{{\left( {N{H_3}} \right)}_2}} \right].$$ Here, the word $$cis$$ refers to $$cis$$ geometrical isomer of $$\left[ {PtC{l_2}{{\left( {N{H_3}} \right)}_2}} \right].$$ It is used as an antitumour agent.
143.
The complex showing a spin-only magnetic moment of $$2.82\,{\text{B}}{\text{.M}}{\text{.}}\,{\text{is}}:$$
A
$$Ni{\left( {CO} \right)_4}$$
B
$${\left[ {NiC{l_4}} \right]^{2 - }}$$
C
$$Ni{\left( {PP{h_3}} \right)_4}$$
D
$${\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }}$$
Answer :
$${\left[ {NiC{l_4}} \right]^{2 - }}$$
$${\left[ {NiC{l_4}} \right]^{2 - }},O.S.\,{\text{of}}\,Ni = + 2$$
$$Ni\left( {28} \right) = 3{d^8}4{s^2}$$
$$C{l^ - }$$ being weak ligand it cannot pair up the two electrons present in $$3d$$ orbital
No. of unpaired electrons = $$2$$
Magnetic moment, $$\mu = 2.82\,{\text{BM}}.$$
144.
The spin only magnetic moment value of $$Fe{\left( {CO} \right)_5}$$ is
A
2.84 $$B.M.$$
B
4.90 $$B.M.$$
C
5.92 $$B.M.$$
D
0 $$B.M.$$
Answer :
0 $$B.M.$$
No explanation is given for this question. Let's discuss the answer together.
145.
A coordination compound $$CrC{l_3} \cdot 4{H_2}O$$ gives white precipitate of $$AgCl$$ with $$AgN{O_3}.$$ The molar conductance of the compound corresponds to two ions. The structural formula of the compound is
A
$$\left[ {Cr{{\left( {{H_2}O} \right)}_4}C{l_3}} \right]$$
B
$$\left[ {Cr{{\left( {{H_2}O} \right)}_3}C{l_3}} \right]{H_2}O$$
C
$$\left[ {Cr{{\left( {{H_2}O} \right)}_4}C{l_2}} \right]Cl$$
D
$$\left[ {Cr{{\left( {{H_2}O} \right)}_4}Cl} \right]C{l_2}$$
It gives precipitate with $$AgN{O_3}$$ it means it gives $$C{l^ - }$$ ions in the solution. Since conductivity corresponds to two ions, it shows one $$C{l^ - }$$ is outside the coordination sphere. The structure will be
$$\left[ {Cr{{\left( {{H_2}O} \right)}_4}C{l_2}} \right]Cl \to $$ $${\left[ {Cr{{\left( {{H_2}O} \right)}_4}C{l_2}} \right]^ + } + C{l^ - }$$
$$AgN{O_3} + C{l^ - } \to \mathop {AgCl}\limits_{{\text{white ppt}}{\text{.}}} + NO_3^ - $$
146.
On treatment of $$100\,mL\,{\text{of }}0.1{\text{ }}M$$ solution of $$CoC{l_3}.6{H_2}O$$ with excess $$AgN{O_3};1.2 \times {10^{22}}$$ ions are precipitated. The complex is:
A
$$\left[ {Co{{\left( {{H_2}O} \right)}_4}C{l_2}} \right]Cl.2{H_2}O$$
B
$$\left[ {Co{{\left( {{H_2}O} \right)}_3}C{l_3}} \right]3{H_2}O$$
C
$$\left[ {Co{{\left( {{H_2}O} \right)}_6}} \right]C{l_3}$$
D
$$\left[ {Co{{\left( {{H_2}O} \right)}_5}Cl} \right]C{l_2}.{H_2}O$$
$${\text{Moles of}}\,{\text{complex = }}\frac{{{\text{Molarity}}\, \times {\text{Volume}}\left( {mL} \right)}}{{1000}}{\text{ = }}\frac{{100 \times 0.1}}{{1000}} = 0.01\,{\text{mole}}$$
Moles of ions precipitated with excess of $$AgN{O_3}$$
$$ = \frac{{1.2 \times {{10}^{22}}}}{{6.02 \times {{10}^{23}}}} = 0.02\,{\text{moles}}$$
$$0.01 \times n = 0.02$$
$$\therefore n = 2$$
It means $$2C{l^ - }$$ ions present in ionization sphere
∴ Complex is $$\left[ {Co{{\left( {{H_2}O} \right)}_5}Cl} \right]C{l_2}.{H_2}O$$
147.
The geometry of $$Ni{\left( {CO} \right)_4}$$ and $$Ni{\left( {PP{h_3}} \right)_2}C{l_2}$$ are
A
both square planar
B
tetrahedral and square planar
C
both tetrahedral
D
None of these
Answer :
both tetrahedral
148.
In which of the following coordination entities the magnitude of $${\Delta _o}$$ ( $$CFSE$$   in octahedral field ) will be maximum ?
$$\left( {{\text{At}}{\text{.}}\,{\text{no}}{\text{.}}\,{\text{of}}\,\,Co = 27} \right)$$
A
$${\left[ {Co{{\left( {{H_2}O} \right)}_6}} \right]^{3 + }}$$
B
$${\left[ {Co{{\left( {N{H_3}} \right)}_6}} \right]^{3 + }}$$
C
$${\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }}$$
D
$${\left[ {Co{{\left( {{C_2}{O_4}} \right)}_3}} \right]^{3 - }}$$
As in all the given complex the central metal atom is same and contains same number of $$d$$ electrons, thus $$CFSE$$ is decided by ligands. In case of strong field ligand, $$CFSE$$ is maximum. $$C{N^ - }$$ is a strong field ligand, Hence, in $${\left[ {Co{{\left( {CN} \right)}_6}} \right]^{3 - }}$$ magnitude of $$CFSE$$ i.e. $${\Delta _o}$$ is maximum.
149.
The correct order of ligands in the spectrochemical series is
A
$$C{l^ - } > en > C{N^ - } > NC{S^ - }$$
B
$$C{N^ - } > en > NC{S^ - } > C{l^ - }$$
C
$$NC{S^ - } > C{N^ - } > C{l^ - } > en$$
D
$$en > C{N^ - } > C{l^ - } > NC{S^ - }$$
Answer :
$$C{N^ - } > en > NC{S^ - } > C{l^ - }$$
Correct order is $$:C{N^ - } > en > NC{S^ - } > C{l^ - }$$
150.
The existence of two different coloured complexes with the composition of $${\left[ {Co{{\left( {N{H_3}} \right)}_4}C{l_2}} \right]^ + }$$ is due to
A
linkage isomerism
B
geometrical isomerism
C
coordination isomerism
D
ionisation isomerism
Answer :
geometrical isomerism
Key Idea Complexes of $$\left[ {M{A_4}{B_2}} \right]$$ type exhibit geometrical isomerism.
The complex $${\left[ {Co{{\left( {N{H_3}} \right)}_4}C{l_2}} \right]^ + }$$ is a $$\left[ {M{A_4}{B_2}} \right]$$ type complex and thus, fulfills the conditions that are necessary to exhibit geometrical isomerism. Hence, it has two geometrical isomers of different colours as :
The structure of the geometrical isomers is as For linkage isomerism, presence of ambidentate ligand is necessary. For coordination isomerism, both the cation and anion of the complex must be complex ions. For ionisation isomerism, an anion different to the ligands must be present outside the coordination sphere. All these conditions are not satisfied by this complex. Hence, it does not exhibit other given isomerisms.