Co - ordination Compounds MCQ Questions & Answers in Inorganic Chemistry | Chemistry
Learn Co - ordination Compounds MCQ questions & answers in Inorganic Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.
231.
Considering $${H_2}O$$ as a weak field ligand, the number of unpaired electrons in $${\left[ {Mn{{\left( {{H_2}O} \right)}_6}} \right]^{2 + }}$$ will be ( At. no. of $$Mn = 25$$ )
A
3
B
5
C
2
D
4
Answer :
5
In $${\left[ {Mn{{\left( {{H_2}O} \right)}_6}} \right]^{2 + }},Mn$$ is present as $$M{n^{2 + }}$$ or $$Mn\left( {{\text{II}}} \right),$$ so its electronic configuration $$ = 1{s^2},2{s^2}2{p^6},3{s^2}3{p^6},3{d^5}$$
In $${\left[ {Mn{{\left( {{H_2}O} \right)}_6}} \right]^{2 + }}$$ the coordination number of $$Mn$$ is six, and in presence of weak field, ligand there will be no pairing of electrons in $$3d.$$ So, it will form high spin complex due to presence of five unpaired electrons.
232.
A magnetic moment of $$1.73\,BM$$ will be shown by one among the following
A
$${\left[ {Cu{{\left( {N{H_3}} \right)}_4}} \right]^{2 + }}$$
B
$${\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }}$$
Magnetic moment, $$\mu $$ is related with number of unpaired electrons as
$$\eqalign{
& \mu = \sqrt {n\left( {n + 2} \right)} \,BM \cr
& {\left( {1.73} \right)^2} = n\left( {n + 2} \right) \cr} $$
On solving $$n=1$$
Thus, the complex/compound having one unpaired electron exhibit a magnetic moment of $$1.73\,BM.$$
$$\eqalign{
& \left( {\text{A}} \right){\text{In}}{\left[ {Cu{{\left( {N{H_3}} \right)}_4}} \right]^{2 + }} \cr
& C{u^{2 + }} = \left[ {Ar} \right]3{d^9} \cr} $$
( Although in the presence of strong field ligand $$N{H_3},$$ the unpaired electron gets excited to higher energy level but it still remains unpaired ).
$$\eqalign{
& \left( {\text{B}} \right){\text{In}}{\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }} \cr
& N{i^{2 + }} = \left[ {Ar} \right]3{d^8} \cr} $$
But $$C{N^ - }$$ being strong field ligand pair up the unpaired electrons and hence in this complex, number of unpaired electrons = 0.
$$\eqalign{
& \left( {\text{C}} \right){\text{In}}\left[ {TiC{l_4}} \right] \cr
& T{i^{4 + }} = \left[ {Ar} \right] \cr} $$
no unpaired electron.
$$\eqalign{
& \left( {\text{D}} \right){\text{In}}{\left[ {CoC{l_6}} \right]^{4 - }} \cr
& C{o^{2 + }} = \left[ {Ar} \right]3{d^7} \cr} $$
It contains three unpaired electrons.
Thus, $${\left[ {Cu{{\left( {N{H_3}} \right)}_4}} \right]^{2 + }}$$ is the complex that exhibits a magnetic moment $$1.73\,BM.$$
233.
Hydrogen peroxide oxidises $${\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{4 - }}$$ to $${\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 - }}$$ in acidic medium but reduces $${\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{3 - }}$$ to $${\left[ {Fe{{\left( {CN} \right)}_6}} \right]^{4 - }}\,$$ in alkaline medium. The other products formed are respectively:
A
$$\left( {{H_2}O + {O_2}} \right)\,{\text{and}}\,{H_2}O$$
234.
For octahedral complex, which of the following $${d^n}$$ configurations of metal cation cannot exist in high spin and low spin forms ?
A
$${d^3}{\text{ and }}{d^8}$$
B
$${d^3}{\text{ and }}{d^5}$$
C
$${d^3}{\text{ and }}{d^6}$$
D
$${d^4}{\text{ and }}{d^8}$$
Answer :
$${d^3}{\text{ and }}{d^8}$$
In $${d^3}$$ and $${d^8}$$ octahedral complexes number of unpaired $${e^ - }s$$ at central metal atom/ion never changes, therefore for such octahedral complexes terms high spin and low spin not used.
235.
The terahedral complex $$\left[ {M\left( A \right)\left( B \right)\left( X \right)\left( Y \right)} \right],$$ where $$A,B,X$$ and $$Y$$ are different ligands and $$M$$ is a metal ion is
A
optically inactive
B
rotate plane polarized light
C
incomplete information
D
can’t be said
Answer :
rotate plane polarized light
Non – superimposable mirror images are optically active, hence rotate plane polarized light.
236.
Of the following complex ions which is diamagnetic in nature ?
A
$${\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }}$$
Electronic configuration of $$N{i^{2 + }}$$ in $${\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }}$$ is $$N{i^{2 + }} = 3{d^8}4{s^0}$$
$$N{i^{2 + }}$$ has $$ds{p^2}$$ hybridisation, as $$C{N^ - }$$ is a strong field ligand.
$$\therefore \,\,{\left[ {Ni{{\left( {CN} \right)}_4}} \right]^{2 - }}$$ is diamagnetic ( because of the absence of unpaired electrons ).
237.
Possible isomerism in complexes $$\left[ {Co{{\left( {N{H_3}} \right)}_3}{{\left( {N{O_2}} \right)}_3}} \right]$$ and $$\left[ {Co{{\left( {N{H_3}} \right)}_5}\left( {N{O_2}} \right)} \right]C{l_2},$$ respecitvely are:
Complexes of type $$M{A_4}{B_2}$$ show geometrical isomerism.
239.
The IUPAC name of $$\left[ {Ni{{\left( {N{H_3}} \right)}_4}} \right]\left[ {NiC{l_4}} \right]$$ is
A
Tetrachloronickel (II) - tetraamminenickel (I)
B
Tetraamminenickel (II) - tetrachloronickel (II)
C
Tetraamminenickel (Il) - tetrachloronickelate (II)
D
Tetrachloronickel (II) - tetrachloronickelate (0)
Answer :
Tetraamminenickel (Il) - tetrachloronickelate (II)
The correct IUPAC name of the given compound is tetramminenickel (Il) - tetrachloronickelate (II) thus (C) is the correct answer.
240.
The geometry of $$Ni{\left( {CO} \right)_4}\,{\text{and}}\,Ni{\left( {PP{h_3}} \right)_2}C{l_2}\,{\text{are}}$$
A
both square planar
B
tetrahedral and square planar, respectively
C
both tetrahedral
D
square planar and tetrahedral, respectively
Answer :
both tetrahedral
NOTE : In metal carbonyl the metal is in zero oxidation state.
In $$Ni{\left( {CO} \right)_4},O.N.{\text{of}}\,Ni = 0$$
For $$Ni\left( {Z = 28} \right)$$
In presence of $$CO\,{\text{two}}\,4s$$ electrons pair up, thus
In $$Ni{\left( {PP{h_3}} \right)_2}C{l_2},O.N.\,\,{\text{of}}\,\,Ni = + 2$$
For $$N{i^{2 + }}$$
$$PP{h_3}\,{\text{and}}\,C{l^ - }$$ can't pair up $$d - {\text{electrons}},$$ leading to $$s{p^3}$$ hybridization leading to tetrahedral geometry.