Chemical Equilibrium MCQ Questions & Answers in Physical Chemistry | Chemistry

Learn Chemical Equilibrium MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.

151. Which of the following options will be correct for the stage of half completion of the reaction : $$A \rightleftharpoons B?$$

A $$\Delta {G^ \circ } = 0$$
B $$\Delta {G^ \circ } > 0$$
C $$\Delta {G^ \circ } < 0$$
D $$\Delta {G^ \circ } = - RT\,\ln \,2$$
Answer :   $$\Delta {G^ \circ } = 0$$

152. If $${K_1}$$  and $${K_2}$$  are respective equilibrium constants for the two reactions
$$Xe{F_6}\left( g \right) + {H_2}O\left( g \right) \rightleftharpoons $$     $$XeO{F_4}\left( g \right) + 2HF\left( g \right)$$
$$Xe{O_4}\left( g \right) + Xe{F_6}\left( g \right) \rightleftharpoons $$     $$XeO{F_4}\left( g \right) + Xe{O_3}{F_2}\left( g \right)$$
the equilibrium constant for the reaction
$$Xe{O_4}\left( g \right) + 2HF\left( g \right) \rightleftharpoons $$     $$Xe{O_3}{F_2}\left( g \right) + {H_2}O\left( g \right)$$     will be

A $$\frac{{{K_1}}}{{K_2^2}}$$
B $${K_1}.{K_2}$$
C $$\frac{{{K_1}}}{{{K_2}}}$$
D $$\frac{{{K_2}}}{{{K_1}}}$$
Answer :   $$\frac{{{K_2}}}{{{K_1}}}$$

153. If the equilibrium constant for $${N_2}\left( g \right) + {O_2}\left( g \right) \rightleftharpoons 2NO\left( g \right)$$     is $$K,$$  the equilibrium constant for $$\frac{1}{2}{N_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \rightleftharpoons NO\left( g \right)$$       will be,

A $${K^{\frac{1}{2}}}$$
B $$\frac{1}{2}K$$
C $$K$$
D $${K^2}$$
Answer :   $${K^{\frac{1}{2}}}$$

154. $$PC{l_5},PC{l_3}$$   and $$C{l_2}$$  are at equilibrium at $$500\,K$$  in a closed container and their concentrations are $$0.8 \times {10^{ - 3}}\,mol\,{L^{ - 1}},$$    $$1.2 \times {10^{ - 3}}\,mol\,{L^{ - 1}}$$    and $$1.2 \times {10^{ - 3}}mol\,{L^{ - 1}}$$    respectively. The value of $${K_c}$$  for the reaction : $$PC{l_{5\left( g \right)}} \rightleftharpoons PC{l_{3\left( g \right)}} + C{l_{2\left( g \right)}}$$     will be

A $$1.8 \times {10^3}\,mol\,{L^{ - 1}}$$
B $$1.8 \times {10^{ - 3}}\,mol\,{L^{ - 1}}$$
C $$1.8 \times {10^{ - 3}}\,L\,mo{l^{ - 1}}$$
D $$0.55 \times {10^4}\,L\,mo{l^{ - 1}}$$
Answer :   $$1.8 \times {10^{ - 3}}\,mol\,{L^{ - 1}}$$

155. For the reaction, $$CO\left( g \right) + C{l_2}\left( g \right) \rightleftharpoons COC{l_2}\left( g \right)$$       the $$\frac{{{K_p}}}{{{K_c}}}$$ is equal to

A $$\sqrt {RT} $$
B RT
C $$\frac{1}{{RT}}$$
D 1.0
Answer :   $$\frac{1}{{RT}}$$

156. If the concentration of $$O{H^ - }$$ $$ions$$  in the reaction, $$Fe{\left( {OH} \right)_3}\left( s \right) \rightleftharpoons $$    $$F{e^{3 + }}\left( {aq} \right) + 3O{H^ - }\left( {aq} \right)$$     is decreased by $$\frac{1}{4}$$  times, then equilibrium concentration of $$F{e^{3 + }}$$  will increase by

A 8 times
B 16 times
C 64 times
D 4 times
Answer :   64 times

157. For the reaction $${N_{2\left( g \right)}} + {O_{2\left( g \right)}} \rightleftharpoons 2N{O_{\left( g \right)}},$$     the value of $${K_c}$$  at $$800{\,^ \circ }C$$  is 0.1. What is the value of $${K_p}$$  at this temperature?

A 0.5
B 0.01
C 0.05
D 0.1
Answer :   0.1

158. We know that the relationship between $${K_c}$$  and $${K_p}$$  is $${K_p} = {K_c}{\left( {RT} \right)^{\Delta n}}$$
What would be the value of $${\Delta n}$$  for the reaction : $$N{H_4}C{l_{\left( s \right)}} \rightleftharpoons N{H_{3\left( g \right)}} + HC{l_{\left( g \right)}}?$$

A 1
B 0.5
C 1.5
D 2
Answer :   2

159. For the reaction : $${H_2}\left( g \right) + {I_2}\left( g \right) \rightleftharpoons 2HI\left( g \right)$$      the equilibrium constant $${K_p}$$ changes with

A total pressure
B catalyst
C the amounts of $${H_2}$$ and $${I_2}$$ present
D temperature
Answer :   temperature

160. For the equilibrium system $$2HX\left( g \right) \rightleftharpoons {H_2}\left( g \right) + {X_2}\left( g \right)$$      the equilibrium constant is $$1.0 \times {10^{ - 5}}.$$   What is the concentration of $$HX$$  if the equilibrium concentration of $${H_2}$$  and $${X_2}$$  are $$1.2 \times {10^{ - 3}}M,$$   and $$1.2 \times {10^{ - 4}}M$$   respectively.

A $$12 \times {10^{ - 4}}M$$
B $$12 \times {10^{ - 3}}M$$
C $$12 \times {10^{ - 2}}M$$
D $$12 \times {10^{ - 1}}M$$
Answer :   $$12 \times {10^{ - 2}}M$$