Chemical Equilibrium MCQ Questions & Answers in Physical Chemistry | Chemistry
Learn Chemical Equilibrium MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.
151.
Which of the following options will be correct for the stage of half completion of the reaction : $$A \rightleftharpoons B?$$
A
$$\Delta {G^ \circ } = 0$$
B
$$\Delta {G^ \circ } > 0$$
C
$$\Delta {G^ \circ } < 0$$
D
$$\Delta {G^ \circ } = - RT\,\ln \,2$$
Answer :
$$\Delta {G^ \circ } = 0$$
When the reaction is half completed, $$\left[ A \right] = \left[ B \right].$$
$${\text{Thus,}}\,K = \frac{{\left[ B \right]}}{{\left[ A \right]}} = 1$$
$$\therefore \Delta {G^ \circ } = - RT\,\ln \,K$$ $$ = - RT\,\ln \left( 1 \right) = 0$$
152.
If $${K_1}$$ and $${K_2}$$ are respective equilibrium constants for the two reactions
$$Xe{F_6}\left( g \right) + {H_2}O\left( g \right) \rightleftharpoons $$ $$XeO{F_4}\left( g \right) + 2HF\left( g \right)$$
$$Xe{O_4}\left( g \right) + Xe{F_6}\left( g \right) \rightleftharpoons $$ $$XeO{F_4}\left( g \right) + Xe{O_3}{F_2}\left( g \right)$$
the equilibrium constant for the reaction
$$Xe{O_4}\left( g \right) + 2HF\left( g \right) \rightleftharpoons $$ $$Xe{O_3}{F_2}\left( g \right) + {H_2}O\left( g \right)$$ will be
153.
If the equilibrium constant for $${N_2}\left( g \right) + {O_2}\left( g \right) \rightleftharpoons 2NO\left( g \right)$$ is $$K,$$ the equilibrium constant for $$\frac{1}{2}{N_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \rightleftharpoons NO\left( g \right)$$ will be,
A
$${K^{\frac{1}{2}}}$$
B
$$\frac{1}{2}K$$
C
$$K$$
D
$${K^2}$$
Answer :
$${K^{\frac{1}{2}}}$$
Plan As wecan see the reaction for which we have to find out equilibrium constant is different only in stoichiometric coefficient as compared to the given reaction. Hence, we can find equilibrium constant for the required reaction with the help of mentioned equilibrium constant in the problem.
Given, equilibrium constant for the reaction,
$${N_2}\left( g \right) + {O_2}\left( g \right) \rightleftharpoons 2NO\left( g \right)\,{\text{is}}\,K$$
i.e. $$K = \frac{{{{\left[ {NO} \right]}^2}}}{{\left[ {{N_2}} \right]\left[ {{O_2}} \right]}}\,\,\,...(i)$$
Let equilibrium constant for the reaction,
$$\frac{1}{2}{N_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \rightleftharpoons NO\left( g \right)\,{\text{is}}\,K'$$
i.e. $$K' = \frac{{\left[ {NO} \right]}}{{{{\left[ {{N_2}} \right]}^{\frac{1}{2}}}{{\left[ {{O_2}} \right]}^{\frac{1}{2}}}}}$$
On squaring both sides
$$K{'^2} = \frac{{{{\left[ {NO} \right]}^2}}}{{\left[ {{N_2}} \right]\left[ {{O_2}} \right]}}\,\,\,...(ii)$$
On comparing Eqs. (i) and (ii), we get
$$K = K{'^2}$$
or $$K' = \sqrt K $$
154.
$$PC{l_5},PC{l_3}$$ and $$C{l_2}$$ are at equilibrium at $$500\,K$$ in a closed container and their concentrations are $$0.8 \times {10^{ - 3}}\,mol\,{L^{ - 1}},$$ $$1.2 \times {10^{ - 3}}\,mol\,{L^{ - 1}}$$ and $$1.2 \times {10^{ - 3}}mol\,{L^{ - 1}}$$ respectively. The value of $${K_c}$$ for the reaction : $$PC{l_{5\left( g \right)}} \rightleftharpoons PC{l_{3\left( g \right)}} + C{l_{2\left( g \right)}}$$ will be
155.
For the reaction, $$CO\left( g \right) + C{l_2}\left( g \right) \rightleftharpoons COC{l_2}\left( g \right)$$ the $$\frac{{{K_p}}}{{{K_c}}}$$ is equal to
156.
If the concentration of $$O{H^ - }$$ $$ions$$ in the reaction, $$Fe{\left( {OH} \right)_3}\left( s \right) \rightleftharpoons $$ $$F{e^{3 + }}\left( {aq} \right) + 3O{H^ - }\left( {aq} \right)$$ is decreased by $$\frac{1}{4}$$ times, then equilibrium concentration of $$F{e^{3 + }}$$ will increase by
A
8 times
B
16 times
C
64 times
D
4 times
Answer :
64 times
$$Fe{\left( {OH} \right)_3}\left( s \right) \rightleftharpoons $$ $$F{e^{3 + }}\left( {aq} \right) + 3O{H^ - }\left( {aq} \right)$$
$$K = \frac{{\left[ {F{e^{3 + }}} \right]{{\left[ {O{H^ - }} \right]}^3}}}{{\left[ {Fe{{\left( {OH} \right)}_3}} \right]}}\,\,\,...{\text{(i)}}$$
To maintain equilibrium constant, let the concentration of $${F{e^{3 + }}}$$ is increased $$x$$ times, on decreasing the concentration of $${O{H^ - }}$$ by $$\frac{1}{4}$$ times
$$\eqalign{
& K = \frac{{\left[ {xF{e^{3 + }}} \right]{{\left[ {\frac{1}{4} \times O{H^ - }} \right]}^3}}}{{\left[ {Fe{{\left( {OH} \right)}_3}} \right]}}\,\,\,...{\text{(ii)}} \cr
& {\text{By dividing eq}}{\text{. (ii) by (i) we get}} \cr
& \frac{1}{{64}} \times x = 1\,\, \Rightarrow \,\,x = 64\,{\text{times}} \cr} $$
157.
For the reaction $${N_{2\left( g \right)}} + {O_{2\left( g \right)}} \rightleftharpoons 2N{O_{\left( g \right)}},$$ the value of $${K_c}$$ at $$800{\,^ \circ }C$$ is 0.1. What is the value of $${K_p}$$ at this temperature?
A
0.5
B
0.01
C
0.05
D
0.1
Answer :
0.1
$$\eqalign{
& {N_{2\left( g \right)}} + {O_{2\left( g \right)}} \rightleftharpoons 2N{O_{\left( g \right)}};{K_c} = 0.1 \cr
& \Delta n = 0,{\text{hence,}}\,{K_p} = {K_c} \cr} $$
158.
We know that the relationship between $${K_c}$$ and $${K_p}$$ is $${K_p} = {K_c}{\left( {RT} \right)^{\Delta n}}$$
What would be the value of $${\Delta n}$$ for the reaction : $$N{H_4}C{l_{\left( s \right)}} \rightleftharpoons N{H_{3\left( g \right)}} + HC{l_{\left( g \right)}}?$$
A
1
B
0.5
C
1.5
D
2
Answer :
2
For the reaction : $$N{H_4}C{l_{\left( s \right)}} \rightleftharpoons N{H_{3\left( g \right)}} + HC{l_{\left( g \right)}}$$
$$\eqalign{
& \Delta n = {n_{\left( {{\text{gaseous products}}} \right)}} - {n_{\left( {{\text{gaseous reactants}}} \right)}} \cr
& \,\,\,\,\,\,\,\,\, = 2 - 0 \cr
& \,\,\,\,\,\,\,\,\, = 2 \cr} $$
159.
For the reaction : $${H_2}\left( g \right) + {I_2}\left( g \right) \rightleftharpoons 2HI\left( g \right)$$ the equilibrium constant $${K_p}$$ changes with
A
total pressure
B
catalyst
C
the amounts of $${H_2}$$ and $${I_2}$$ present
D
temperature
Answer :
temperature
Only temperature affects the equilibrium constant. Since here $$\Delta H = 2 - 2 = 0,$$ so there is no change in Kp when total pressure changes.
160.
For the equilibrium system $$2HX\left( g \right) \rightleftharpoons {H_2}\left( g \right) + {X_2}\left( g \right)$$ the equilibrium constant is $$1.0 \times {10^{ - 5}}.$$ What is the concentration of $$HX$$ if the equilibrium concentration of $${H_2}$$ and $${X_2}$$ are $$1.2 \times {10^{ - 3}}M,$$ and $$1.2 \times {10^{ - 4}}M$$ respectively.