Chemical Equilibrium MCQ Questions & Answers in Physical Chemistry | Chemistry
Learn Chemical Equilibrium MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.
41.
For the reaction $$2N{O_{2\left( g \right)}} \rightleftharpoons {N_2}{O_{4\left( g \right)}},\frac{{{K_p}}}{{{K_c}}}$$ is equal to
As all the reactants and products are present in aqueous form in (D) so it is a reversible reaction. In others either solid or gas is generated which is insoluble or volatile and hence makes the reaction unidirectional.
43.
Gaseous $${N_2}{O_4}$$ dissociates into gaseous $$N{O_2}$$ according to the reaction $$\left[ {{N_2}{O_4}\left( g \right) \rightleftharpoons 2N{O_2}\left( g \right)} \right]$$
At $$300\,K$$ and $$1\,atm$$ pressure, the degree of dissociation of $${{N_2}{O_4}}$$ is $$0.2.$$ If one mole of $${{N_2}{O_4}}$$ gas is contained in a vessel, then the density of the equilibrium mixture is :
44.
$${K_1}$$ and $${K_2}$$ are equilibrium constant for reactions (i) and (ii)
$${N_2}\left( g \right) + {O_2}\left( g \right) \rightleftharpoons $$ $$2NO\left( g \right)...{\text{(i)}}$$
$$NO\left( g \right) \rightleftharpoons $$ $$\frac{1}{2}{N_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right)...{\text{(ii)}}$$
Then,
A
$${K_1} = {\left[ {\frac{1}{{{K_2}}}} \right]^2}$$
45.
At $$500\,K,$$ the equilibrium constant for the reaction $${H_{2\left( g \right)}} + {I_{2\left( g \right)}} \rightleftharpoons 2H{I_{\left( g \right)}}$$ is 24.8. If $$\frac{1}{2}mol/L$$ of $$HI$$ is present at equilibrium, what are the concentrations of $${H_2}$$ and $${I_2},$$ assuming that we started by taking $$HI$$ and reached the equilibrium at $$500\,K?$$
46.
The standard Gibbs energy change at $$300 K$$ for the reaction $$2A \rightleftharpoons B + C$$ is $$2494.2.J.$$ At a given time, the composition of the reaction mixture is $$\left[ A \right] = \frac{1}{2},\left[ B \right] = 2\,{\text{and}}\,\left[ C \right] = \frac{1}{2}.$$ The reaction proceeds in the : $$\left[ {R = 8.314\,J/K/mol,\,e = 2.718} \right]$$
47.
The value of $${K_c}$$ for the following equilibrium is $$CaC{O_{3\left( s \right)}} \rightleftharpoons Ca{O_{\left( s \right)}} + C{O_{2\left( g \right)}}.$$ Given $${K_p} = 167\,bar$$ at $$1073\,K.$$
48.
In the dissociation of $$PC{l_5}$$ as $$PC{l_5}\left( g \right) \rightleftharpoons PC{l_3}\left( g \right) + C{l_2}\left( g \right)$$ if the degree of dissociation is $$\alpha $$ at equilibrium pressure $$P,$$ then the equilibrium constant for the reaction is
A
$${K_p} = \frac{{{\alpha ^2}}}{{1 + {\alpha ^2}P}}$$
B
$${K_p} = \frac{{{\alpha ^2}{P^2}}}{{1 - {\alpha ^2}}}$$
C
$${K_p} = \frac{{{P^2}}}{{1 - {\alpha ^2}}}$$
D
$${K_p} = \frac{{{\alpha ^2}P}}{{1 - {\alpha ^2}}}$$
49.
The equilibrium constant for the reaction $${N_2}\left( g \right) + {O_2}\left( g \right) \rightleftharpoons 2N{O_2}\left( g \right)$$ at temperature $$T$$ is $$4 \times {10^{ - 4}}.$$ The value of $${K_c}$$ for the reaction $$N{O_2}\left( g \right) \rightleftharpoons \frac{1}{2}{N_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right)$$ at the same temperature is
50.
If $${K_1}$$ and $${K_2}$$ are the respective equilibrium constants for the two reactions,
$$Xe{F_6}\left( g \right) + {H_2}O\left( g \right) \rightleftharpoons $$ $$XeO{F_4}\left( g \right) + 2HF\left( g \right)$$
$$Xe{O_4}\left( g \right) + Xe{F_6}\left( g \right) \rightleftharpoons $$ $$XeO{F_4}\left( g \right) + Xe{O_3}{F_2}\left( g \right)$$
The equilibrium constant of the reaction,
$$Xe{O_4}\left( g \right) + 2HF\left( g \right) \rightleftharpoons $$ $$Xe{O_3}{F_2}\left( g \right) + {H_2}O\left( g \right)$$ will be
A
$$\frac{{{K_1}}}{{{{\left( {{K_2}} \right)}^2}}}$$
B
$${K_1} \cdot {K_2}$$
C
$$\frac{{{K_1}}}{{{K_2}}}$$
D
$$\frac{{{K_2}}}{{{K_1}}}$$
Answer :
$$\frac{{{K_2}}}{{{K_1}}}$$
$$XeF{e_6}\left( g \right) + {H_2}O\left( g \right) \rightleftharpoons $$ $$XeO{F_4}\left( g \right) + 2HF\left( g \right)$$
$${K_1} = \frac{{\left[ {XeO{F_4}} \right]{{\left[ {HF} \right]}^2}}}{{\left[ {Xe{F_6}} \right]\left[ {{H_2}O} \right]}}\,\,\,...{\text{(i)}}$$
$$Xe{O_4}\left( g \right) + Xe{F_6}\left( g \right) \rightleftharpoons $$ $$XeO{F_4}\left( g \right) + Xe{O_3}{F_2}\left( g \right)$$
$${K_2} = \frac{{\left[ {XeO{F_4}} \right]\left[ {Xe{O_3}{F_2}} \right]}}{{\left[ {Xe{O_4}} \right]\left[ {Xe{F_6}} \right]}}\,\,\,...{\text{(ii)}}$$
$${\text{For the reaction,}}$$
$$Xe{O_4}\left( g \right) + 2HF\left( g \right) \rightleftharpoons $$ $$Xe{O_3}{F_2}\left( g \right) + {H_2}O\left( g \right)$$
$$\eqalign{
& K = \frac{{\left[ {Xe{O_3}{F_2}} \right]\left[ {{H_2}O} \right]}}{{\left[ {Xe{O_4}} \right]{{\left[ {HF} \right]}^2}}}\,\,\,...{\text{(iii)}} \cr
& {\text{By dividing eq}}{\text{. (ii) by (i) we get,}} \cr
& K = \frac{{{K_2}}}{{{K_1}}} \cr} $$