Chemical Equilibrium MCQ Questions & Answers in Physical Chemistry | Chemistry
Learn Chemical Equilibrium MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.
61.
The equilibrium constant for a reaction is $$K,$$ and the reaction quotient is $$Q.$$ For a particular reaction mixture, the ratio $$\frac{K}{Q}$$ is 0.33. This means that :
A
The reaction mixture will equilibrate to form more reactant species
B
the reaction mixture will equilibrate to form more product species
C
the equilibrium ratio of reactant to product concentrations will be 3
D
the equilibrium ratio of reactant to product concentrations will be 0.33
Answer :
The reaction mixture will equilibrate to form more reactant species
$$\eqalign{
& \because \,\,\frac{K}{Q} = 0.33 \cr
& \Rightarrow K < Q \cr} $$
i.e., reaction moves in backward direction to achieve equilibrium.
62.
What is the unit of $${K_p}$$ for the reaction ?
$$C{S_2}\left( g \right) + 4{H_2}\left( g \right) \rightleftharpoons C{H_4}\left( g \right) + 2{H_2}S\left( g \right)$$
63.
At $$500\,K,$$ equilibrium constant, $${K_c},$$ for the following reaction is 5.
$$\frac{1}{2}{H_{2\left( g \right)}} + \frac{1}{2}{I_{2\left( g \right)}} \rightleftharpoons H{I_{\left( g \right)}}$$
What would be the equilibrium constant $${K_c}$$ for the reaction : $$2H{I_{\left( g \right)}} \rightleftharpoons {H_{2\left( g \right)}} + {I_{2\left( g \right)}}?$$
A
0.04
B
0.4
C
25
D
2.5
Answer :
0.04
$$\eqalign{
& \frac{1}{2}{H_{2\left( g \right)}} + \frac{1}{2}{I_{2\left( g \right)}} \rightleftharpoons H{I_{\left( g \right)}};{K_c} = 5...\left( {\text{i}} \right) \cr
& {\text{Multiply}}\,\,{\text{eqn }}\left( {\text{i}} \right){\text{ by 2,}} \cr
& {{\text{H}}_{2\left( g \right)}} + {I_{2\left( g \right)}} \rightleftharpoons 2H{I_{\left( g \right)}};{K_c} = {\left( 5 \right)^2}...\left( {{\text{ii}}} \right) \cr
& {\text{Now, reverse the reaction}} \cr} $$
$$2H{I_{\left( g \right)}} \rightleftharpoons {H_{2\left( g \right)}} + {I_{2\left( g \right)}};$$ $${K_c} = \frac{1}{{{{\left( 5 \right)}^2}}} = \frac{1}{{25}} = 0.04$$
64.
For the reversible reaction, $${N_2}\left( g \right) + 3{H_2}\left( g \right) \rightleftharpoons 2N{H_3}\left( g \right)$$ at $${500^ \circ }C,$$ the value of $${K_p}$$ is 1.44 × 10-5 when partial pressure is measured in atmospheres. The corresponding value of $${K_c},$$ with concentration in mole $$litr{e^{ - 1}},$$ is
65.
In which of the following reactions the increase in pressure will favour the increase in products?
A
$${N_{2\left( g \right)}} + {O_{2\left( g \right)}} \rightleftharpoons 2N{O_{\left( g \right)}}$$
B
$$PC{l_{3\left( g \right)}} + C{l_{2\left( g \right)}} \rightleftharpoons PC{l_{5\left( g \right)}}$$
C
$$PC{l_{5\left( g \right)}} \rightleftharpoons PC{l_{3\left( g \right)}} + C{l_{2\left( g \right)}}$$
D
$$2C{O_{2\left( g \right)}} \rightleftharpoons 2C{O_{\left( g \right)}} + {O_{2\left( g \right)}}$$
Answer :
$$PC{l_{3\left( g \right)}} + C{l_{2\left( g \right)}} \rightleftharpoons PC{l_{5\left( g \right)}}$$
Decrease in number of moles in the reaction makes it favourable at high pressure.
66.
Reversible reaction is studied graphically as shown in the given figure. $${N_2}{O_4} \rightleftharpoons 2N{O_2},{K_c} = 4$$
Select the correct statements out of (i), (ii) and (iii).
(i) Reaction quotient has maximum value at point $$A.$$
(ii) Reaction proceeds left to right at a point when $$\left[ {{N_2}{O_4}} \right] = \left[ {N{O_2}} \right] = 0.1\,M.$$
(iii) $${K_c} = Q$$ when point $$D$$ or $$F$$ is reached.
A
(i), (ii)
B
(ii), (iii)
C
(i), (iii)
D
(i), (ii), (iii)
Answer :
(ii), (iii)
$$\left( {\text{i}} \right)Q = \frac{{{{\left[ {N{O_2}} \right]}^2}}}{{\left[ {{N_2}{O_4}} \right]}}$$
Since, $$\left[ {N{O_2}} \right]$$ is minimum and $$\left[ {{N_2}{O_4}} \right]$$ is maximum at point $$A,$$ hence $$Q$$ is minimum at this point. Thus, false.
$$\left( {{\text{ii}}} \right)Q = \frac{{{{\left( {0.1} \right)}^2}}}{{\left( {0.1} \right)}} = 0.1 < {K_c}$$
Thus, reaction proceeds left to right. Thus, true.
$$\left( {{\text{iii}}} \right){K_c} = Q$$ when equilibrium is reached at point $$D$$ or $$F.$$ Thus, true.
67.
The equilibrium constants for the reaction, $${A_2} \rightleftharpoons 2A$$ at $$500$$ $$K$$ and $$700$$ $$K$$ are $$1 \times {10^{ - 10}}$$ and $$1 \times {10^{ - 5}}.$$ The given reaction is
A
exothermic
B
slow
C
endothermic
D
fast
Answer :
slow
$$\eqalign{
& {\text{For the reaction,}} \cr
& {A_2} \rightleftharpoons 2A \cr
& \,\,\,K = \frac{{{{\left[ A \right]}^2}}}{{\left[ {{A_2}} \right]}} \cr} $$
The value of equilibrium constant is very less and hence, the product concentration is also very less. So, the reaction is slow.
68.
$$\eqalign{
& \left( {\text{i}} \right)\,{N_2}\left( g \right) + 3{H_2}\left( g \right) \rightleftharpoons 2N{H_3}\left( g \right),{K_1} \cr
& \left( {{\text{ii}}} \right){N_2}\left( g \right) + {O_2}\left( g \right) \rightleftharpoons 2NO\left( g \right),{K_2} \cr
& \left( {{\text{iii}}} \right){H_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \rightleftharpoons {H_2}O\left( g \right),{K_3} \cr} $$
The equation for the equilibrium constant of the reaction
$$2N{H_3}\left( g \right) + \frac{5}{2}{O_2}\left( g \right)$$ $$ \rightleftharpoons 2NO\left( g \right) + 3{H_2}O\left( g \right),\left( {{K_4}} \right)$$ in terms of $${K_1},{K_2}$$ and $${K_3}$$ is :
A
$$\frac{{{K_1}.{K_2}}}{{{K_3}}}$$
B
$$\frac{{{K_1}.K_3^2}}{{{K_2}}}$$
C
$${K_1}{K_2}{K_3}$$
D
$$\frac{{{K_2}.K_3^3}}{{{K_1}}}$$
Answer :
$$\frac{{{K_2}.K_3^3}}{{{K_1}}}$$
To calculate the value of $${K_4}$$ in the given equation we should apply :
$$\eqalign{
& eqn.\left( {{\text{ii}}} \right) + eqn.\left( {{\text{iii}}} \right) \times 3 - eqn.\left( {\text{i}} \right) \cr
& {\text{hence}}\,\,{K_4} = \frac{{{K_2}K_3^3}}{{{K_1}}} \cr} $$
69.
For the following three reactions $$a,$$ $$b$$ and $$c,$$ equilibrium constants are given :
$$\eqalign{
& \left( {\text{i}} \right){\text{CO(g) + }}{{\text{H}}_2}{\text{O(g) }} \rightleftharpoons {\text{ C}}{{\text{O}}_2}{\text{(g) + }}{{\text{H}}_2}{\text{ (g); }}{{\text{K}}_1} \cr
& \left( {{\text{ii}}} \right){\text{C}}{{\text{H}}_4}{\text{(g) + }}{{\text{H}}_2}{\text{O(g) = CO(g) + 3}}{{\text{H}}_2}{\text{(g); }}{{\text{K}}_2} \cr
& \left( {{\text{iii}}} \right){\text{C}}{{\text{H}}_4}{\text{(g) + 2}}{{\text{H}}_2}{\text{O(g) = C}}{{\text{O}}_2}{\text{(g) + 4}}{{\text{H}}_2}{\text{(g);}}\,\,{{\text{K}}_3} \cr} $$
A
$${K_1}\sqrt {{K_2}} = {K_3}$$
B
$${K_2}{K_3} = {K_1}$$
C
$${K_3} = {K_1}{K_2}$$
D
$${K_3}.K_2^3 = K_1^2$$
Answer :
$${K_3} = {K_1}{K_2}$$
Reaction (C) can be obtained by adding reactions (A) and (B) therefore $${K_3} = {K_1}.{K_2}$$
Hence (C) is the correct answer.
70.
In a reaction $$A + B \rightleftharpoons C + D,$$ the initial concentrations, of $$A$$ and $$B$$ were $$0.9\,mol.\,d{m^{ - 3}}$$ each. At equilibrium the concentration of $$D$$ was found to be $$0.6\,mol\,d{m^{ - 3}}.$$ What is the value of equilibrium constant for the reaction