Chemical Equilibrium MCQ Questions & Answers in Physical Chemistry | Chemistry

Learn Chemical Equilibrium MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.

61. The equilibrium constant for a reaction is $$K,$$ and the reaction quotient is $$Q.$$ For a particular reaction mixture, the ratio $$\frac{K}{Q}$$  is 0.33. This means that :

A The reaction mixture will equilibrate to form more reactant species
B the reaction mixture will equilibrate to form more product species
C the equilibrium ratio of reactant to product concentrations will be 3
D the equilibrium ratio of reactant to product concentrations will be 0.33
Answer :   The reaction mixture will equilibrate to form more reactant species

62. What is the unit of $${K_p}$$  for the reaction ?
$$C{S_2}\left( g \right) + 4{H_2}\left( g \right) \rightleftharpoons C{H_4}\left( g \right) + 2{H_2}S\left( g \right)$$

A $$atm$$
B $$at{m^{ - 2}}$$
C $$at{m^2}$$
D $$at{m^{ - 1}}$$
Answer :   $$at{m^{ - 2}}$$

63. At $$500\,K,$$  equilibrium constant, $${K_c},$$  for the following reaction is 5.
$$\frac{1}{2}{H_{2\left( g \right)}} + \frac{1}{2}{I_{2\left( g \right)}} \rightleftharpoons H{I_{\left( g \right)}}$$
What would be the equilibrium constant $${K_c}$$  for the reaction : $$2H{I_{\left( g \right)}} \rightleftharpoons {H_{2\left( g \right)}} + {I_{2\left( g \right)}}?$$

A 0.04
B 0.4
C 25
D 2.5
Answer :   0.04

64. For the reversible reaction, $${N_2}\left( g \right) + 3{H_2}\left( g \right) \rightleftharpoons 2N{H_3}\left( g \right)$$      at $${500^ \circ }C,$$  the value of $${K_p}$$  is 1.44 × 10-5 when partial pressure is measured in atmospheres. The corresponding value of $${K_c},$$  with concentration in mole $$litr{e^{ - 1}},$$  is

A $$\frac{{1.44 \times {{10}^{ - 5}}}}{{{{\left( {0.082 \times 500} \right)}^{ - 2}}}}$$
B $$\frac{{1.44 \times {{10}^{ - 5}}}}{{{{\left( {8.314 \times 773} \right)}^{ - 2}}}}$$
C $$\frac{{1.44 \times {{10}^{ - 5}}}}{{{{\left( {0.082 \times 773} \right)}^2}}}$$
D $$\frac{{1.44 \times {{10}^{ - 5}}}}{{{{\left( {0.082 \times 773} \right)}^{ - 2}}}}$$
Answer :   $$\frac{{1.44 \times {{10}^{ - 5}}}}{{{{\left( {8.314 \times 773} \right)}^{ - 2}}}}$$

65. In which of the following reactions the increase in pressure will favour the increase in products?

A $${N_{2\left( g \right)}} + {O_{2\left( g \right)}} \rightleftharpoons 2N{O_{\left( g \right)}}$$
B $$PC{l_{3\left( g \right)}} + C{l_{2\left( g \right)}} \rightleftharpoons PC{l_{5\left( g \right)}}$$
C $$PC{l_{5\left( g \right)}} \rightleftharpoons PC{l_{3\left( g \right)}} + C{l_{2\left( g \right)}}$$
D $$2C{O_{2\left( g \right)}} \rightleftharpoons 2C{O_{\left( g \right)}} + {O_{2\left( g \right)}}$$
Answer :   $$PC{l_{3\left( g \right)}} + C{l_{2\left( g \right)}} \rightleftharpoons PC{l_{5\left( g \right)}}$$

66. Reversible reaction is studied graphically as shown in the given figure. $${N_2}{O_4} \rightleftharpoons 2N{O_2},{K_c} = 4$$
Chemical Equilibrium mcq question image
Select the correct statements out of (i), (ii) and (iii).
(i) Reaction quotient has maximum value at point $$A.$$
(ii) Reaction proceeds left to right at a point when $$\left[ {{N_2}{O_4}} \right] = \left[ {N{O_2}} \right] = 0.1\,M.$$
(iii) $${K_c} = Q$$   when point $$D$$  or $$F$$  is reached.

A (i), (ii)
B (ii), (iii)
C (i), (iii)
D (i), (ii), (iii)
Answer :   (ii), (iii)

67. The equilibrium constants for the reaction, $${A_2} \rightleftharpoons 2A$$   at $$500$$ $$K$$ and $$700$$ $$K$$ are $$1 \times {10^{ - 10}}$$  and $$1 \times {10^{ - 5}}.$$  The given reaction is

A exothermic
B slow
C endothermic
D fast
Answer :   slow

68. $$\eqalign{ & \left( {\text{i}} \right)\,{N_2}\left( g \right) + 3{H_2}\left( g \right) \rightleftharpoons 2N{H_3}\left( g \right),{K_1} \cr & \left( {{\text{ii}}} \right){N_2}\left( g \right) + {O_2}\left( g \right) \rightleftharpoons 2NO\left( g \right),{K_2} \cr & \left( {{\text{iii}}} \right){H_2}\left( g \right) + \frac{1}{2}{O_2}\left( g \right) \rightleftharpoons {H_2}O\left( g \right),{K_3} \cr} $$
The equation for the equilibrium constant of the reaction
$$2N{H_3}\left( g \right) + \frac{5}{2}{O_2}\left( g \right)$$     $$ \rightleftharpoons 2NO\left( g \right) + 3{H_2}O\left( g \right),\left( {{K_4}} \right)$$      in terms of $${K_1},{K_2}$$  and $${K_3}$$  is :

A $$\frac{{{K_1}.{K_2}}}{{{K_3}}}$$
B $$\frac{{{K_1}.K_3^2}}{{{K_2}}}$$
C $${K_1}{K_2}{K_3}$$
D $$\frac{{{K_2}.K_3^3}}{{{K_1}}}$$
Answer :   $$\frac{{{K_2}.K_3^3}}{{{K_1}}}$$

69. For the following three reactions $$a,$$ $$b$$ and $$c,$$ equilibrium constants are given :
$$\eqalign{ & \left( {\text{i}} \right){\text{CO(g) + }}{{\text{H}}_2}{\text{O(g) }} \rightleftharpoons {\text{ C}}{{\text{O}}_2}{\text{(g) + }}{{\text{H}}_2}{\text{ (g); }}{{\text{K}}_1} \cr & \left( {{\text{ii}}} \right){\text{C}}{{\text{H}}_4}{\text{(g) + }}{{\text{H}}_2}{\text{O(g) = CO(g) + 3}}{{\text{H}}_2}{\text{(g); }}{{\text{K}}_2} \cr & \left( {{\text{iii}}} \right){\text{C}}{{\text{H}}_4}{\text{(g) + 2}}{{\text{H}}_2}{\text{O(g) = C}}{{\text{O}}_2}{\text{(g) + 4}}{{\text{H}}_2}{\text{(g);}}\,\,{{\text{K}}_3} \cr} $$

A $${K_1}\sqrt {{K_2}} = {K_3}$$
B $${K_2}{K_3} = {K_1}$$
C $${K_3} = {K_1}{K_2}$$
D $${K_3}.K_2^3 = K_1^2$$
Answer :   $${K_3} = {K_1}{K_2}$$

70. In a reaction $$A + B \rightleftharpoons C + D,$$    the initial concentrations, of $$A$$ and $$B$$ were $$0.9\,mol.\,d{m^{ - 3}}$$   each. At equilibrium the concentration of $$D$$ was found to be $$0.6\,mol\,d{m^{ - 3}}.$$   What is the value of equilibrium constant for the reaction

A 8
B 4
C 9
D 3
Answer :   4