Chemical Kinetics MCQ Questions & Answers in Physical Chemistry | Chemistry

Learn Chemical Kinetics MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.

271. A first order reaction is $$50\% $$  completed in $$1.26 \times {10^{14}}s.$$   How much time would it take for $$100\% $$  completion?

A $$1.26 \times {10^{15}}s$$
B $$2.52 \times {10^{14}}s$$
C $$2.52 \times {10^{28}}s$$
D $${\text{Infinite}}$$
Answer :   $${\text{Infinite}}$$

272. The rate of a reaction doubles when its temperature changes from $$300 K$$  to $$310 K.$$  Activation energy of such a reaction will be : $$\left( {R = 8.314\,J{K^{ - 1}}mo{l^{ - 1}}\,{\text{and}}\,\log 2 = 0.301} \right)$$

A $$53.6\,kJ\,mo{l^{ - 1}}$$
B $$48.6\,kJ\,mo{l^{ - 1}}$$
C $$58.5\,kJ\,mo{l^{ - 1}}$$
D $$60.5\,kJ\,mo{l^{ - 1}}$$
Answer :   $$53.6\,kJ\,mo{l^{ - 1}}$$

273. For a reaction, $${A_2} + {B_2} \rightleftharpoons 2AB$$    the figure shows the path of the reaction in absence and presence of a catalyst. What will be the energy of activation for forward $$\left( {{E_f}} \right)$$  and backward $$\left( {{E_b}} \right)$$  reaction in presence of a catalyst and $$\Delta H$$  for the reaction? The dotted curve is the path of reaction in presence of a catalyst.
Chemical Kinetics mcq question image

A $${E_f} = 60\,kJ/mol,{E_b} = 70\,kJ/mol,$$       $$\Delta H = 20\,kJ/mol$$
B $${E_f} = 20\,kJ/mol,{E_b} = 20\,kJ/mol,$$       $$\Delta H = 50\,kJ/mol$$
C $${E_f} = 70\,kJ/mol,{E_b} = 20\,kJ/mol,$$       $$\Delta H = 10\,kJ/mol$$
D $${E_f} = 10\,kJ/mol,{E_b} = 20\,kJ/mol,$$       $$\Delta H = - 10\,kJ/mol$$
Answer :   $${E_f} = 10\,kJ/mol,{E_b} = 20\,kJ/mol,$$       $$\Delta H = - 10\,kJ/mol$$

274. A radioactive isotope having a half - life period of 3 days was received after 12 days. If $$3g$$  of the isotope is left in the container, what would be the initial mass of the isotope?

A 12 $$g$$
B 36 $$g$$
C 48 $$g$$
D 24 $$g$$
Answer :   48 $$g$$

275. For the reaction, $$2{N_2}{O_5} \to 4N{O_2} + {O_2},$$     the rate equation can be expressed in two ways $$ - \frac{{d\left[ {{N_2}{O_5}} \right]}}{{dt}} = k\left[ {{N_2}{O_5}} \right]$$     and $$ + \frac{{d\left[ {N{O_2}} \right]}}{{dt}} = k'\left[ {{N_2}{O_5}} \right]$$     $$k$$  and $$k'$$  are related as :

A $$k = k'$$
B $$2k = k'$$
C $$k = 2k'$$
D $$k = 4k'$$
Answer :   $$2k = k'$$

276. The half-life period of a radioactive element is 140 days. After 560 days, one gram of the element will reduced to :

A $$\frac{1}{2}g$$
B $$\frac{1}{4}g$$
C $$\frac{1}{8}g$$
D $$\frac{1}{{16}}g$$
Answer :   $$\frac{1}{{16}}g$$

277. The rate constant of a zero order reaction is $$2.0 \times {10^{ - 2}}mol\,{L^{ - 1}}{s^{ - 1}}.$$     If the concentration of the reactant after 25 seconds is $$0.5\,M.$$  What is the initial concentration?

A 0.5$$\,M$$
B 1.25$$\,M$$
C 12.5$$\,M$$
D 1.0$$\,M$$
Answer :   1.0$$\,M$$

278. A first order reaction is half-completed in 45 minutes. How long does it need for $$99.9\% $$  of the reaction to be completed ?

A $$20\,{\text{hours}}$$
B $$10\,{\text{hours}}$$
C $$7\frac{1}{2}\,{\text{hours}}$$
D $$5\,{\text{hours}}$$
Answer :   $$7\frac{1}{2}\,{\text{hours}}$$

279. $$\eqalign{ & A{g^ + } + N{H_3} \rightleftharpoons {\left[ {Ag\left( {N{H_3}} \right)} \right]^ + }\,;\,{k_1} = 6.8 \times {10^{ - 3}} \cr & {\left[ {Ag\left( {N{H_3}} \right)} \right]^ + } + N{H_3} \rightleftharpoons {\left[ {Ag{{\left( {N{H_3}} \right)}_2}} \right]^ + };{k_2} = 1.6 \times {10^{ - 3}} \cr} $$
then the formation constant of $${\left[ {Ag{{\left( {N{H_3}} \right)}_2}} \right]^ + }\,is$$

A $$6.8 \times {10^{ - 6}}$$
B $$1.08 \times {10^{ - 5}}$$
C $$1.08 \times {10^{ - 6}}$$
D $$6.8 \times {10^{ - 5}}$$
Answer :   $$1.08 \times {10^{ - 5}}$$

280. The rate equation for a reaction,
$${N_2}O \to {N_2} + \frac{1}{2}{O_2}$$
is Rate $$ = k{\left[ {{N_2}O} \right]^0} = k.$$    If the initial concentration of the reactant is $$a\,mol\,Li{t^{ - 1}},$$   the half-life period of the reaction is

A $${t_{\frac{1}{2}}} = \frac{a}{{2k}}$$
B $$ - {t_{\frac{1}{2}}} = ka$$
C $${t_{\frac{1}{2}}} = \frac{a}{k}$$
D $${t_{\frac{1}{2}}} = \frac{k}{a}$$
Answer :   $${t_{\frac{1}{2}}} = \frac{a}{{2k}}$$