Chemical Kinetics MCQ Questions & Answers in Physical Chemistry | Chemistry

Learn Chemical Kinetics MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.

41. Which of the following is an example of a fractional order reaction?

A $$N{H_4}N{O_2} \to {N_2} + 2{H_2}O$$
B $$NO + {O_3} \to N{O_2} + {O_2}$$
C $$2NO + B{r_2} \to 2NOBr$$
D $$C{H_3}CHO \to C{H_4} + CO$$
Answer :   $$C{H_3}CHO \to C{H_4} + CO$$

42. In the reaction, $$BrO_3^ - \left( {aq} \right) + 5B{r^ - }\left( {aq} \right) + 6{H^ + }$$      $$ \to 3B{r_2}\left( l \right) + 3{H_2}O\left( l \right)$$     the rate of appearance of bromine $$\left( {B{r_2}} \right)$$  is related to rate of disappearance of bromide ions as following.

A $$\frac{{d\left[ {B{r_2}} \right]}}{{dt}} = - \frac{3}{5}\frac{{d\left[ {B{r^ - }} \right]}}{{dt}}$$
B $$\frac{{d\left[ {B{r_2}} \right]}}{{dt}} = - \frac{5}{3}\frac{{d\left[ {B{r^ - }} \right]}}{{dt}}$$
C $$\frac{{d\left[ {B{r_2}} \right]}}{{dt}} = \frac{5}{3}\frac{{d\left[ {B{r^ - }} \right]}}{{dt}}$$
D $$\frac{{d\left[ {B{r_2}} \right]}}{{dt}} = \frac{3}{5}\frac{{d\left[ {B{r^ - }} \right]}}{{dt}}$$
Answer :   $$\frac{{d\left[ {B{r_2}} \right]}}{{dt}} = - \frac{3}{5}\frac{{d\left[ {B{r^ - }} \right]}}{{dt}}$$

43. The rate constant for a first order reaction at $${300^ \circ }C$$  for which $${E_a}$$ is $$35\,kcal\,mo{l^{ - 1}}$$   and frequency constant is $$1.45 \times {10^{11}}{s^{ - 1}}$$   is

A $$10 \times {10^{ - 2}}\,{s^{ - 1}}$$
B $$5.37 \times {10^{10}}\,{s^{ - 1}}$$
C $$5 \times {10^{ - 4}}\,{s^{ - 1}}$$
D $$2.94 \times {10^{ - 3}}\,{s^{ - 1}}$$
Answer :   $$2.94 \times {10^{ - 3}}\,{s^{ - 1}}$$

44. Consider the reaction $${N_2}\left( g \right) + 3{H_2}\left( g \right) \to 2N{H_3}\left( g \right)$$      The equality relationship between $$\frac{{d\left[ {N{H_3}} \right]}}{{dt}}$$   and $$ - \frac{{d\left[ {{H_2}} \right]}}{{dt}}$$   is

A $$ + \frac{{d\left[ {N{H_3}} \right]}}{{dt}} = - \frac{2}{3}\frac{{d\left[ {{H_2}} \right]}}{{dt}}$$
B $$ + \frac{{d\left[ {N{H_3}} \right]}}{{dt}} = - \frac{3}{2}\frac{{d\left[ {{H_2}} \right]}}{{dt}}$$
C $$\frac{{d\left[ {N{H_3}} \right]}}{{dt}} = - \frac{{d\left[ {{H_2}} \right]}}{{dt}}$$
D $$\frac{{d\left[ {N{H_3}} \right]}}{{dt}} = - \frac{1}{3}\frac{{d\left[ {{H_2}} \right]}}{{dt}}$$
Answer :   $$ + \frac{{d\left[ {N{H_3}} \right]}}{{dt}} = - \frac{2}{3}\frac{{d\left[ {{H_2}} \right]}}{{dt}}$$

45. The rate law for a reaction between the substances $$A$$ and $$B$$ is given by rate $$ = k{\left[ A \right]^n}{\left[ B \right]^m}.$$    On doubling the concentration of $$A$$ and halving the concentration of $$B,$$  the ratio of the new rate to the earlier rate of the reaction will be as

A $$\left( {m + n} \right)$$
B $$\left( {n - m} \right)$$
C $${2^{\left( {n + m} \right)}}$$
D $$\frac{1}{{{2^{\left( {m + n} \right)}}}}$$
Answer :   $${2^{\left( {n + m} \right)}}$$

46. $${t_{\frac{1}{4}}}$$ can be taken as the time taken for the concentration of a reactant to drop to $$\frac{3}{4}$$  of its initial value. If the rate constant for a first order reaction is $$k,$$  the $${t_{\frac{1}{4}}}$$ can be written as

A $$\frac{{0.75}}{k}$$
B $$\frac{{0.69}}{k}$$
C $$\frac{{0.29}}{k}$$
D $$\frac{{0.10}}{k}$$
Answer :   $$\frac{{0.29}}{k}$$

47. Hydrogen bomb is based on the principle of

A artificial radioactivity
B nuclear fusion
C natural radioactivity
D nuclear fission
Answer :   nuclear fusion

48. In a reaction, $$A + B \to $$  Product, rate is doubled when the concentration of $$B$$  is doubled and rate increases by a factor of 8 when the concentrations of both the reactants ( $$A$$ and $$B$$  ) are doubled. Rate law for the reaction can be written as

A $${\text{rate}} = k\left[ A \right]{\left[ B \right]^2}$$
B $${\text{rate}} = k{\left[ A \right]^2}{\left[ B \right]^2}$$
C $${\text{rate}} = k\left[ A \right]\left[ B \right]$$
D $${\text{rate}} = k{\left[ A \right]^2}\left[ B \right]$$
Answer :   $${\text{rate}} = k{\left[ A \right]^2}\left[ B \right]$$

49. $$A \to B,\Delta H = - 10kJ\,mo{l^{ - 1}},{E_{a\left( f \right)}} = 50\,kJ\,mo{l^{ - 1}},$$          then $${E_a}$$ of $$B \to A$$  will be

A $$40\,kJ\,mo{l^{ - 1}}$$
B $$50\,kJ\,mo{l^{ - 1}}$$
C $$ - 50\,kJ\,mo{l^{ - 1}}$$
D $$60\,kJ\,mo{l^{ - 1}}$$
Answer :   $$60\,kJ\,mo{l^{ - 1}}$$

50. For the first order reaction $$A \to B + C$$    is carried out at $${27^ \circ }C.$$  If $$3.8 \times {10^{ - 16}}\% $$   of the reactant molecules exists in the activated state, the $${E_a}$$  (activation energy) of the reaction is :

A $$12\,kJ/mol$$
B $$831.4\,kJ/mol$$
C $$100\,kJ/mol$$
D $$88.57\,kJ/mol$$
Answer :   $$100\,kJ/mol$$