Chemical Kinetics MCQ Questions & Answers in Physical Chemistry | Chemistry

Learn Chemical Kinetics MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.

81. Units of rate constant of first and zero order reactions in terms of molarity $$M$$ unit are respectively

A $${\sec ^{ - 1}},M.{\sec ^{ - 1}}$$
B $${\sec ^{ - 1}},M$$
C $$M.{\sec ^{ - 1}},{\sec ^{ - 1}}$$
D $$M,{\sec ^{ - 1}}$$
Answer :   $${\sec ^{ - 1}},M.{\sec ^{ - 1}}$$

82. The rate of first order reaction is \[1.5\times {{10}^{-2}}mol\,{{L}^{-1}}{{\min }^{-1}}\]     at $$0.5\,M$$  concentration of the reactant. The half-life of the reaction is

A $$0.383\,\min $$
B $$23.1\,\min $$
C $$8.73\,\min $$
D $$7.53\,\min $$
Answer :   $$23.1\,\min $$

83. Nitrogen dioxide $$\left( {N{O_2}} \right)$$  dissociates into nitric oxide $$(NO)$$  and oxygen $$\left( {{O_2}} \right)$$  as follows : $$2N{O_2} \to 2NO + {O_2}$$
If the rate of decrease of concentration of $$N{O_2}$$  is $$6.0 \times {10^{ - 12}}\,mol\,{L^{ - 1}}{s^{ - 1}}.$$     What will be the rate of increase of concentration of $${O_2}?$$

A $$3 \times {10^{ - 12}}\,mol\,{L^{ - 1}}{s^{ - 1}}$$
B $$6 \times {10^{ - 12}}\,mol\,{L^{ - 1}}\,{s^{ - 1}}$$
C $$1 \times {10^{ - 12}}\,mol\,{L^{ - 1}}\,{s^{ - 1}}$$
D $$1.5 \times {10^{ - 12}}\,mol\,{L^{ - 1}}\,{s^{ - 1}}$$
Answer :   $$3 \times {10^{ - 12}}\,mol\,{L^{ - 1}}{s^{ - 1}}$$

84. The rate of a chemical reaction doubles for every $${10^ \circ }C$$  rise of temperature. If the temperature is raised by $${50^ \circ }C,$$  the rate of the reaction increases by about :

A 10 times
B 24 times
C 32 times
D 64 times
Answer :   32 times

85. For a reversible reaction, $$A + B \rightleftharpoons C + D,$$    the graph for rate of reaction with time is given below. Mark the terms $$(p), (q)$$  and $$(r).$$
Chemical Kinetics mcq question image

A $$(p)$$  - rate of backward reaction, $$(q)$$  - rate of forward reaction, $$(r)$$  - equilibrium
B $$(p)$$  - rate of forward reaction, $$(q)$$  - rate of backward reaction, $$(r)$$  - equilibrium
C $$(p)$$  - concentration of products, $$(q)$$  - concentration of reactants, $$(r)$$  - rate of reaction
D $$(p)$$  - instantaneous rate of reaction, $$(q)$$  - variation of rate, $$(r)$$  - average rate of reaction
Answer :   $$(p)$$  - rate of forward reaction, $$(q)$$  - rate of backward reaction, $$(r)$$  - equilibrium

86. In a pseudo first order hydrolysis of ester in water, the following results were obtained.
$$t/s$$ 0 30 60 90
Ester/$$mol\,{L^{ - 1}}$$ 0.55 0.31 0.17 0.085

What will be the average rate of reaction between the time interval 30 to 60 seconds?

A $$1.91 \times {10^{ - 2}}\,{s^{ - 1}}$$
B $$4.67 \times {10^{ - 3}}\,mol\,{L^{ - 1}}\,{s^{ - 1}}$$
C $$1.98 \times {10^{ - 3}}\,{s^{ - 1}}$$
D $$2.07 \times {10^{ - 2}}\,{s^{ - 1}}$$
Answer :   $$4.67 \times {10^{ - 3}}\,mol\,{L^{ - 1}}\,{s^{ - 1}}$$

87. Decomposition of $${H_2}{O_2}$$  follows a first order reaction. In fifty minutes the concentration of $${H_2}{O_2}$$  decreases from 0.5 to $$0.125 M$$  in one such decomposition. When the concentration of $${H_2}{O_2}$$  reaches $$0.05 M,$$  the rate of formation of $${O_2}$$ will be :

A $$2.66\,L\,\min {\,^{ - 1}}at\,STP$$
B $$1.34 \times {10^{ - 2}}\,mol\,\min {\,^{ - 1}}$$
C $$6.96 \times {10^{ - 2}}\,mol\,\min {\,^{ - 1}}$$
D $$6.93 \times {10^{ - 4}}\,mol\,\min {\,^{ - 1}}$$
Answer :   $$6.93 \times {10^{ - 4}}\,mol\,\min {\,^{ - 1}}$$

88. For the reaction, $$2A + B \to 3C + D$$     which of the following does not express the reaction rate?

A $$ - \frac{{d\left[ C \right]}}{{3dt}}$$
B $$ - \frac{{d\left[ B \right]}}{{dt}}$$
C $$\frac{{d\left[ D \right]}}{{dt}}$$
D $$ - \frac{{d\left[ A \right]}}{{2dt}}$$
Answer :   $$ - \frac{{d\left[ C \right]}}{{3dt}}$$

89. A following mechanism has been proposed for a reaction
$$\eqalign{ & 2A + B \to D + E \cr & A + B \to C + D\left( {{\text{slow}}} \right) \cr & A + C \to E\left( {{\text{fast}}} \right) \cr} $$
The rate law expression for the reaction is :

A $$r = k{\left[ A \right]^2}\left[ B \right]$$
B $$r = k\left[ A \right]\left[ B \right]$$
C $$r = k{\left[ A \right]^2}$$
D $$r = k\left[ A \right]\left[ C \right]$$
Answer :   $$r = k\left[ A \right]\left[ B \right]$$

90. The decomposition of a hydrocarbon follows the equation $$k = \left( {4.5 \times {{10}^{11}}\,{s^{ - 1}}} \right){e^{ - \frac{{28000\,K}}{T}}}.$$      What will be the value of activation energy?

A $$669\,kJ\,mo{l^{ - 1}}$$
B $$232.79\,kJ\,mo{l^{ - 1}}$$
C $$4.5 \times {10^{11}}\,kJ\,mo{l^{ - 1}}$$
D $$28000\,kJ\,mo{l^{ - 1}}$$
Answer :   $$232.79\,kJ\,mo{l^{ - 1}}$$