Chemical Thermodynamics MCQ Questions & Answers in Physical Chemistry | Chemistry

Learn Chemical Thermodynamics MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.

261. The standard enthalpy of formation of $$N{H_3}$$ is $$ - 46.0\,kJ\,mo{l^{ - 1}}.$$   If the enthalpy of formation of $${H_2}$$ from its atoms is $$ - 436\,kJ\,mo{l^{ - 1}}$$   and that of $${N_2}$$ is $$ - 712\,kJ\,mo{l^{ - 1}},$$    the average bond enthalpy of $$N - H$$  bond in $$N{H_3}$$  is

A $$ - 964\,kJ\,mo{l^{ - 1}}$$
B $$ + 352\,kJ\,mo{l^{ - 1}}$$
C $$ + 1056\,kJ\,mo{l^{ - 1}}$$
D $$ - 1102\,kJ\,mo{l^{ - 1}}$$
Answer :   $$ + 352\,kJ\,mo{l^{ - 1}}$$

262. The standard sate Gibbs free energies of formation of $$C$$ (graphite) and $$C$$ (diamond) at $$T=298 K$$  are
$$\eqalign{ & {\Delta _f}{G^0}\left[ {C\left( {graphite} \right)} \right] = 0\,kJ\,mo{l^{ - 1}} \cr & {\Delta _f}{G^0}\left[ {C\left( {diamond} \right)} \right] = 2.9\,kJ\,mo{l^{ - 1}} \cr} $$
The standard state means that the pressure should be 1 bar, and substance should be pure at a given temperature. The conversion of graphite [ $$C$$ (graphite) ] to diamond [ $$C$$ (diamond) ] reduces its volume by $$2 \times {10^{ - 6}}{m^3}mo{l^{ - 1}}.$$    If $$C$$ (graphite) is converted to $$C$$ (diamond) isothermally at $$T=298K,$$  the pressure at which $$C$$ (graphite) is in equilibrium with $$C$$ (diamond), is
[ Useful information: $${1J = 1kg\,{m^2}{s^{ - 2}};}$$   $${1Pa = 1\,kg\,{m^{ - 1}}{s^{ - 2}};}$$    $${1\,bar = {{10}^5}Pa}$$    ]

A 14501 $$bar$$
B 58001 $$bar$$
C 1450 $$bar$$
D 29001 $$bar$$
Answer :   14501 $$bar$$

263. In an irreversible process taking place at constant $$T$$ and $$P$$ and in which only pressure-volume work is being done, the change in Gibbs free energy $$(dG)$$ and change in entropy $$(dS),$$ satisfy the criteria

A $${\left( {dS} \right)_{V.E}} > 0,{\left( {dG} \right)_{T.P}} < 0$$
B $${\left( {dS} \right)_{V.E}} = 0,{\left( {dG} \right)_{T.P}} = 0$$
C $${\left( {dS} \right)_{V,E}} = 0,{\left( {dG} \right)_{T.P}} > 0$$
D $${\left( {dS} \right)_{V,E}} < 0,{\left( {dG} \right)_{T.P}} < 0$$
Answer :   $${\left( {dS} \right)_{V.E}} > 0,{\left( {dG} \right)_{T.P}} < 0$$

264. Among the following, the intensive properties are
(i) molar conductivity
(ii) electromotive force
(iii) resistance
(iv) heat capacity

A (i) and (ii)
B (i), (ii) and (iii)
C (i) and (iv)
D (i) only
Answer :   (i) and (ii)

265. Which of the following relationships is not correct ?

A $$\Delta H = \Delta U + \Delta {n_g}RT$$
B $$\Delta {H_{{\text{sub}}}} = \Delta {H_{{\text{fusion}}}} + \Delta {H_{{\text{vap}}}}$$
C $$\Delta H_r^ \circ = \sum {H_{f{\text{(reactants)}}}^ \circ - \sum {H_{f{\text{(products}})}^ \circ } } $$
D $$\Delta H_r^ \circ = \sum {B.E.\,\,{\text{of reactants}} - \sum {B.E.\,\,{\text{of products}}} } $$
Answer :   $$\Delta H_r^ \circ = \sum {H_{f{\text{(reactants)}}}^ \circ - \sum {H_{f{\text{(products}})}^ \circ } } $$

266. The incorrect expression among the following is :

A $$\frac{{\Delta {G_{system}}}}{{\Delta {S_{total}}}} = - T$$
B In isothermal process, $${w_{reversible}} = - nRT\,\ell n\frac{{{V_f}}}{{{V_i}}}$$
C $$\ell nK = \frac{{\Delta {H^ \circ } - T\Delta {S^ \circ }}}{{RT}}$$
D $$K = {e^{\frac{{ - \Delta {G^ \circ }}}{{RT}}}}$$
Answer :   $$\ell nK = \frac{{\Delta {H^ \circ } - T\Delta {S^ \circ }}}{{RT}}$$

267. Given that :
(i) $${\Delta _f}{H^ \circ }\,{\text{of}}\,{N_2}O\,\,{\text{is}}\,\,82\,kJ\,mo{l^{ - 1}}$$
(ii) Bond energies of $$N \equiv N,\,N = N,O = O$$      and $$N=O$$   are $$946,418,498$$    and $$607\,kJ\,mo{l^{ - 1}}$$   respectively,
The resonance energy of $${N_2}O$$  is :

A $$ - 88 \, kJ$$
B $$ - 66 \, kJ$$
C $$ - 62 \, kJ$$
D $$ - 44 \, kJ$$
Answer :   $$ - 88 \, kJ$$

268. 200 joules of heat was supplied to a system at constant volume. It resulted in the increase in temperature of the system from 298 to 323$$\,K.$$  What is the change in internal energy of the system ?

A 400$$\,J$$
B 200$$\,J$$
C 50$$\,J$$
D 150$$\,J$$
Answer :   200$$\,J$$

269. What is the enthalpy change for the given reaction, if enthalpies of formation of $$A{l_2}{O_3}$$  and $$F{e_2}{O_3}$$  are $$ - 1670\,kJ\,mo{l^{ - 1}}$$    and $$ - 834\,kJ\,mo{l^{ - 1}}$$    respectively ?
$$F{e_2}{O_3} + 2Al \to A{l_2}{O_3} + 2Fe$$

A $$ - 836\,kJ\,mo{l^{ - 1}}$$
B $$ + 836\,kJ\,mo{l^{ - 1}}$$
C $$ - 424\,kJ\,mo{l^{ - 1}}$$
D $$ + 424\,kJ\,mo{l^{ - 1}}$$
Answer :   $$ - 836\,kJ\,mo{l^{ - 1}}$$

270. For an ideal gas, consider only $$P{\text{ - }}V$$  work in going from an initial state $$X$$  to the final state $$Z.$$  The final state $$Z$$  can be reached by either of the two paths shown in the figure. Which of the following choices is correct ? [ Take $$\Delta S$$  as change in entropy and $$w$$  as work done ]
Chemical Thermodynamics mcq question image

A $$\Delta {S_{X \to Z}} = \Delta {S_{X \to Y}} + \Delta {S_{Y \to Z}}$$
B $${w_{X \to Z}} = {w_{X \to Y}} + {w_{Y \to Z}}$$
C $${w_{X \to Y \to Z}} \ne {w_{X \to Y}}$$
D $${w_{X \to Y}} = 0$$
Answer :   $$\Delta {S_{X \to Z}} = \Delta {S_{X \to Y}} + \Delta {S_{Y \to Z}}$$