Chemical Thermodynamics MCQ Questions & Answers in Physical Chemistry | Chemistry
Learn Chemical Thermodynamics MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.
311.
1 gram equivalent of $${H_2}S{O_4}$$ is treated with $$112\,g$$ of $$KOH$$ for complete neutralization. Which of the following statementsis correct?
A
$$13.7\,kcal$$ of heat is evolved with the formation of $$87\,g$$ of $${K_2}S{O_4},$$ leaving no $$KOH.$$
B
$$27.4\,kcal$$ of heat is evolved with the formation of $$87\,g$$ of $${K_2}S{O_4},$$ leaving 4 gram equivalent of $$KOH.$$
C
$$15.7\,kcal$$ of heat is evolved with the formation of 1 gram equivalent of $${K_2}S{O_4},$$ leaving $$56\,g$$ of $$KOH.$$
D
$$13.7\,kcal$$ of heat is evolved with the formation of $$87\,g$$ of $${K_2}S{O_4},$$ leaving 1 gram equivalent of $$KOH.$$
Answer :
$$13.7\,kcal$$ of heat is evolved with the formation of $$87\,g$$ of $${K_2}S{O_4},$$ leaving 1 gram equivalent of $$KOH.$$
\[\underset{\begin{smallmatrix}
98 \\
49
\end{smallmatrix}}{\mathop{{{H}_{2}}S{{O}_{4}}}}\,+\underset{\begin{smallmatrix}
112 \\
56
\end{smallmatrix}}{\mathop{2KOH}}\,\to \underset{\begin{smallmatrix}
174 \\
87
\end{smallmatrix}}{\mathop{{{K}_{2}}S{{O}_{4}}}}\,+\underset{\begin{smallmatrix}
2\,mole \\
1\,mole
\end{smallmatrix}}{\mathop{2{{H}_{2}}O}}\,\]
$$13.7\,kcal$$ is the heat evolved when $$1\,gev$$ of strong acid is neutralised by $$1\,gev$$ of strong base.
312.
What will be the standard internal energy change for the reaction at $$298\,K?$$
$$O{F_{2\left( g \right)}} + {H_2}{O_{\left( g \right)}} \to {O_{2\left( g \right)}} + 2H{F_{\left( g \right)}};$$ $$\Delta {H^ \circ } = - 310\,kJ$$
313.
At $$373\,K,$$ steam and water are in equilibrium and $$\Delta H = 40.98\,kJ\,mo{l^{ - 1}}.$$ What will be $$\Delta S$$ for conversion of water into steam ?
$${H_2}{O_{\left( l \right)}} \to {H_2}{O_{\left( g \right)}}$$
314.
For a given exothermic reaction, $${K_p}$$ and \[K_{p}^{'}\] are the equilibrium constants at temperatures $${T_1}$$ and $${T_2},$$ respectively. Assuming that heat of reaction is constant in temperature range between $${T_1}$$ and $${T_2},$$ it is readily observed that
A
\[{{K}_{p}}>K_{p}^{'}\]
B
C
\[{{K}_{p}}=K_{p}^{'}\]
D
\[{{K}_{p}}=\frac{1}{K_{p}^{'}}\]
Answer :
\[{{K}_{p}}>K_{p}^{'}\]
The equilibrium constant at two different temperatures for a thermodynamic process is given by
$$\log \frac{{{K_2}}}{{{K_1}}} = \frac{{\Delta {H^ \circ }}}{{2.303R}}\left[ {\frac{1}{{{T_1}}} - \frac{1}{{{T_2}}}} \right]$$
Here, $${K_1}$$ and $${K_2}$$ are replaced by $${K_p}$$ and \[K_{p}^{'}.\]
Therefore, \[\log \frac{{{K}^{'}}_{p}}{{{K}_{p}}}=\frac{\Delta {{H}^{\circ }}}{2.303R}\left[ \frac{1}{{{T}_{1}}}-\frac{1}{{{T}_{2}}} \right]\]
For exothermic reaction,
\[\begin{align}
& {{T}_{2}}>{{T}_{1}}\,\,\text{and}\,\,H=-ve \\
& \therefore \,\,{{K}_{p}}>{{K}^{'}}_{p} \\
\end{align}\]
315.
For which change $$\Delta H \ne \Delta E\,:$$
A
$${H_{2\left( g \right)}} + {I_{2\left( g \right)}} \to 2HI\left( g \right)$$
B
$$HC{\text{l}} + NaOH \to NaC{\text{l}}$$
C
$${C_{\left( s \right)}} + {O_{{2_{\left( g \right)}}}} \to C{o_{{2_{\left( g \right)}}}}$$
D
$${N_2}\left( g \right) + 3{H_2}\left( g \right) \to 2N{H_3}\left( g \right)$$
Answer :
$${N_2}\left( g \right) + 3{H_2}\left( g \right) \to 2N{H_3}\left( g \right)$$
$$\eqalign{
& \Delta H = \Delta E + \Delta nRT\,\,{\text{For}}\,\Delta H \ne \Delta E,\Delta n \ne 0 \cr
& {\text{Where}}\,\Delta n = {\text{no}}{\text{.}}\,{\text{of}}\,{\text{moles}}\,{\text{of}}\,{\text{gaseous}}\,{\text{products}} - {\text{no}}{\text{.}}\,{\text{of}}\,{\text{moles}}\,{\text{of}}\,{\text{gaseous}}\,{\text{reactants}} \cr
& \left( {\text{a}} \right)\,\,\Delta n = 2 - 2 = 0 \cr
& \left( {\text{b}} \right)\,\,\Delta n = 0\,\,\,\left( {\because \,\,{\text{they}}\,{\text{are either in solid or liquid state}}} \right) \cr
& \left( {\text{c}} \right)\,\;\Delta n = 1 - 1 = 0\,\,\,\left( {\because \,\,C\,{\text{is}}\,{\text{in}}\,{\text{solid}}\,{\text{state}}} \right) \cr
& \left( {\text{d}} \right)\,\,\Delta n = 2 - 4 = - 2 \cr} $$
316.
Enthalpy change for the process, $${H_2}O\left( {{\text{ice}}} \right) \rightleftharpoons {H_2}O\left( {{\text{water}}} \right)$$ is $$6.01\,kJ\,mo{l^{ - 1}}.$$ The entropy change of $$1\,mole$$ of ice at its melting point will be
317.
$${\Delta _f}{U^ \circ }$$ of combustion of $$C{H_{4\left( g \right)}}$$ at certain temperature is $$ - 393\,kJ\,mo{l^{ - 1}}.$$ The value of $${\Delta _f}{H^ \circ }$$ is
A
$${\text{zero}}$$
B
$$ < {\Delta _f}{U^ \circ }$$
C
$$ > {\Delta _f}{U^ \circ }$$
D
$${\text{equal to}}\,\,{\Delta _f}{U^ \circ }$$
Answer :
$$ < {\Delta _f}{U^ \circ }$$
The balanced equation for combustion of methane is $$C{H_{4\left( g \right)}} + 2{O_{2\left( g \right)}} \to C{O_{2\left( g \right)}} + 2{H_2}{O_{\left( l \right)}}$$
$${\text{Here}},\Delta {n_g} = 1 - 3 = - 2$$
$${\Delta _f}{H^ \circ } = {\Delta _f}{U^ \circ } + \Delta {n_g}RT;$$ $${\Delta _f}{H^ \circ } = - 393 - 2RT$$
$$\therefore \,\,{\Delta _f}{H^ \circ } < {\Delta _f}{U^ \circ }$$
318.
Assuming that water vapour is an ideal gas, the internal energy change $$\left( {\Delta U} \right)$$ when $$1\,mol$$ of water is vapourised at 1 bar pressure and $${100^ \circ }C,$$ ( given : molar enthalpy of vapourisation of water at $$1\,bar$$ and $$373\,K = 41\,kJ\,mo{l^{ - 1}}$$ and $$R = 8.3\,J\,mo{l^{ - 1}}\left. {{K^{ - 1}}} \right)$$ will be
319.
Given that,
$$C\left( s \right) + {O_2}\left( g \right) \to C{O_2}\left( g \right),$$ $$\Delta {H^ \circ } = - x\,kJ$$
$$2CO\left( g \right) + {O_2}\left( g \right) \to 2C{O_2}\left( g \right),$$ $$\Delta {H^ \circ } = - ykJ$$
The enthalpy of formation of carbon monoxide will be
A
$$y - 2x$$
B
$$2x - y$$
C
$$\frac{{y - 2x}}{2}$$
D
$$\frac{{2x - y}}{2}$$
Answer :
$$\frac{{y - 2x}}{2}$$
$$C + {O_2} \to C{O_2},\,\,\Delta {H^ \circ } = - x\,kJ...{\text{(i)}}$$
On reversing given second equation we get,
$$\eqalign{
& 2C{O_2} \to 2CO + {O_2},\,\Delta {H^ \circ } = + y\,kJ \cr
& {\text{or}}\,\,C{O_2} \to CO + \frac{1}{{2{O_2}}},\,\Delta {H^ \circ } = + \frac{y}{2}kJ...{\text{(ii)}} \cr} $$
From Eqs. (i) and (ii) ( by addition )
$$\eqalign{
& C + \frac{1}{2}{O_2} \to CO, \cr
& \Delta {H^ \circ } = \frac{y}{2} - x \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\, = \frac{{y - 2x}}{2}kJ \cr} $$
320.
For the reaction, $${X_2}{O_4}\left( l \right) \to 2X{O_2}\left( g \right),$$ $$\Delta U = 2.1\,kcal,\,\Delta S = 20\,cal\,{K^{ - 1}}$$ at $$300\,K.$$ Hence, $$\Delta G$$ is
A
$$2.7\,kcal$$
B
$$ - 2.7\,kcal$$
C
$$9.3\,kcal$$
D
$$ - 9.3\,kcal$$
Answer :
$$ - 2.7\,kcal$$
The change in Gibbs free energy is given by
$$\Delta G = \Delta H - T\Delta S$$
where, $$\Delta H = $$ change enthalpy of the reaction
$$\Delta S = $$ change entropy of the reaction
Thus, in order to determine $$\Delta G,$$ the values of $$\Delta H$$ must be known. The value of $$\Delta H$$ can be calculated by using equation
$$\Delta H = \Delta U + \Delta {n_g}RT\,\,\,...{\text{(i)}}$$
where, $$\Delta U = $$ change in internal energy using
$$\Delta {n_g} =$$ number of moles of gaseous products $$ - $$ number of moles of gaseous reactants
$$= 2 - 0 = 2$$
$$R = {\text{gas constant}} = 2\,cal$$
given, $$\Delta U = 2.1\,kcal$$
$$ = 2.1 \times {10^3}cal\,\left[ {\because \,\,1\,kcal = {{10}^3}\,cal} \right]$$
By putting the values in eq. (i) we get,
$$\eqalign{
& \therefore \,\,\Delta H = \left( {2.1 \times {{10}^3}} \right) + \left( {2 \times 2 \times 300} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 3300\,cal \cr
& {\text{Hence,}}\,\Delta G = \Delta H - T\Delta S \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\Delta G = \left( {3300} \right) - \left( {300 \times 20} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\Delta G = - 2700\,cal \cr
& \therefore \,\,\,\,\,\,\,\,\,\,\Delta G = - 2.7\,kcal \cr} $$