Chemical Thermodynamics MCQ Questions & Answers in Physical Chemistry | Chemistry

Learn Chemical Thermodynamics MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.

311. 1 gram equivalent of $${H_2}S{O_4}$$  is treated with $$112\,g$$  of $$KOH$$  for complete neutralization. Which of the following statementsis correct?

A $$13.7\,kcal$$  of heat is evolved with the formation of $$87\,g$$  of $${K_2}S{O_4},$$  leaving no $$KOH.$$
B $$27.4\,kcal$$  of heat is evolved with the formation of $$87\,g$$  of $${K_2}S{O_4},$$  leaving 4 gram equivalent of $$KOH.$$
C $$15.7\,kcal$$  of heat is evolved with the formation of 1 gram equivalent of $${K_2}S{O_4},$$  leaving $$56\,g$$  of $$KOH.$$
D $$13.7\,kcal$$  of heat is evolved with the formation of $$87\,g$$  of $${K_2}S{O_4},$$  leaving 1 gram equivalent of $$KOH.$$
Answer :   $$13.7\,kcal$$  of heat is evolved with the formation of $$87\,g$$  of $${K_2}S{O_4},$$  leaving 1 gram equivalent of $$KOH.$$

312. What will be the standard internal energy change for the reaction at $$298\,K?$$
$$O{F_{2\left( g \right)}} + {H_2}{O_{\left( g \right)}} \to {O_{2\left( g \right)}} + 2H{F_{\left( g \right)}};$$      $$\Delta {H^ \circ } = - 310\,kJ$$

A - 312.47$$\,kJ$$
B - 125.03$$\,kJ$$
C - 310$$\,kJ$$
D - 156$$\,kJ$$
Answer :   - 312.47$$\,kJ$$

313. At $$373\,K,$$  steam and water are in equilibrium and $$\Delta H = 40.98\,kJ\,mo{l^{ - 1}}.$$     What will be $$\Delta S$$  for conversion of water into steam ?
$${H_2}{O_{\left( l \right)}} \to {H_2}{O_{\left( g \right)}}$$

A $$109.8\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$$
B $$31\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$$
C $$21.98\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$$
D $$326\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$$
Answer :   $$109.8\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$$

314. For a given exothermic reaction, $${K_p}$$ and \[K_{p}^{'}\] are the equilibrium constants at temperatures $${T_1}$$ and $${T_2},$$ respectively. Assuming that heat of reaction is constant in temperature range between $${T_1}$$ and $${T_2},$$ it is readily observed that

A \[{{K}_{p}}>K_{p}^{'}\]
B K p < K p '
C \[{{K}_{p}}=K_{p}^{'}\]
D \[{{K}_{p}}=\frac{1}{K_{p}^{'}}\]
Answer :   \[{{K}_{p}}>K_{p}^{'}\]

315. For which change $$\Delta H \ne \Delta E\,:$$

A $${H_{2\left( g \right)}} + {I_{2\left( g \right)}} \to 2HI\left( g \right)$$
B $$HC{\text{l}} + NaOH \to NaC{\text{l}}$$
C $${C_{\left( s \right)}} + {O_{{2_{\left( g \right)}}}} \to C{o_{{2_{\left( g \right)}}}}$$
D $${N_2}\left( g \right) + 3{H_2}\left( g \right) \to 2N{H_3}\left( g \right)$$
Answer :   $${N_2}\left( g \right) + 3{H_2}\left( g \right) \to 2N{H_3}\left( g \right)$$

316. Enthalpy change for the process, $${H_2}O\left( {{\text{ice}}} \right) \rightleftharpoons {H_2}O\left( {{\text{water}}} \right)$$     is $$6.01\,kJ\,mo{l^{ - 1}}.$$   The entropy change of $$1\,mole$$   of ice at its melting point will be

A $$12\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$$
B $$22\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$$
C $$100\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$$
D $$30\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$$
Answer :   $$22\,J\,{K^{ - 1}}\,mo{l^{ - 1}}$$

317. $${\Delta _f}{U^ \circ }$$  of combustion of $$C{H_{4\left( g \right)}}$$  at certain temperature is $$ - 393\,kJ\,mo{l^{ - 1}}.$$   The value of $${\Delta _f}{H^ \circ }$$  is

A $${\text{zero}}$$
B $$ < {\Delta _f}{U^ \circ }$$
C $$ > {\Delta _f}{U^ \circ }$$
D $${\text{equal to}}\,\,{\Delta _f}{U^ \circ }$$
Answer :   $$ < {\Delta _f}{U^ \circ }$$

318. Assuming that water vapour is an ideal gas, the internal energy change $$\left( {\Delta U} \right)$$  when $$1\,mol$$  of water is vapourised at 1 bar pressure and $${100^ \circ }C,$$  ( given : molar enthalpy of vapourisation of water at $$1\,bar$$  and $$373\,K = 41\,kJ\,mo{l^{ - 1}}$$    and $$R = 8.3\,J\,mo{l^{ - 1}}\left. {{K^{ - 1}}} \right)$$    will be

A $$41.00\,kJ\,mo{l^{ - 1}}$$
B $$4.100\,kJ\,mo{l^{ - 1}}$$
C $$3.7904\,kJ\,mo{l^{ - 1}}$$
D $$37.904\,kJ\,mo{l^{ - 1}}$$
Answer :   $$37.904\,kJ\,mo{l^{ - 1}}$$

319. Given that,
$$C\left( s \right) + {O_2}\left( g \right) \to C{O_2}\left( g \right),$$     $$\Delta {H^ \circ } = - x\,kJ$$
$$2CO\left( g \right) + {O_2}\left( g \right) \to 2C{O_2}\left( g \right),$$      $$\Delta {H^ \circ } = - ykJ$$
The enthalpy of formation of carbon monoxide will be

A $$y - 2x$$
B $$2x - y$$
C $$\frac{{y - 2x}}{2}$$
D $$\frac{{2x - y}}{2}$$
Answer :   $$\frac{{y - 2x}}{2}$$

320. For the reaction, $${X_2}{O_4}\left( l \right) \to 2X{O_2}\left( g \right),$$     $$\Delta U = 2.1\,kcal,\,\Delta S = 20\,cal\,{K^{ - 1}}$$       at $$300\,K.$$  Hence, $$\Delta G$$  is

A $$2.7\,kcal$$
B $$ - 2.7\,kcal$$
C $$9.3\,kcal$$
D $$ - 9.3\,kcal$$
Answer :   $$ - 2.7\,kcal$$