Chemical Thermodynamics MCQ Questions & Answers in Physical Chemistry | Chemistry
Learn Chemical Thermodynamics MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.
81.
The ‘thermite reaction’ involving the reaction between ferric oxide and metallic aluminium produces molten iron. Given that
$$\eqalign{
& 2Al + \frac{3}{2}{O_2} \to A{l_2}{O_3};\Delta {H_1} = - 400\,kcal/mol \cr
& 2Fe + \frac{3}{2}{O_2} \to F{e_2}{O_3};\Delta {H_2} = - 200\,kcal/mol. \cr} $$
What is $$\Delta H$$ for the formation of $$1\,mole$$ of iron?
A
$$ - 100\,kcal$$
B
$$ - 200\,kcal$$
C
$$ + 100\,kcal$$
D
$$ + 200\,kcal$$
Answer :
$$ - 100\,kcal$$
$${\text{I - II,}}$$ gives, $$2Al + F{e_2}{O_3} \to 2Fe + A{l_2}{O_3}$$
we have $$ - 400 - \left( { - 200} \right) = - 200\,;$$ For one $$mole$$ of iron the value is $$ - 100\,cal$$
82.
Which of the following reactions will have the value of $$\Delta S$$ with a negative sign ?
A
$${H_2}{O_{\left( l \right)}} \to {H_2}{O_{\left( g \right)}}$$
B
$$2S{O_{2\left( g \right)}} + {O_{2\left( g \right)}} \to 2S{O_{3\left( g \right)}}$$
C
$$C{l_{2\left( g \right)}} \to 2C{l_{\left( g \right)}}$$
D
$$CaC{O_{3\left( s \right)}} \to Ca{O_{\left( s \right)}} + C{O_{2\left( g \right)}}$$
Answer :
$$2S{O_{2\left( g \right)}} + {O_{2\left( g \right)}} \to 2S{O_{3\left( g \right)}}$$
$$\eqalign{
& 2S{O_{2\left( g \right)}} + {O_{2\left( g \right)}} \to 2S{O_{3\left( g \right)}} \cr
& \Delta {n_g} = 2 - 3 = - 1,\Delta S = - ve \cr} $$
83.
The correct relationship between free energy change in a reaction and the corresponding equilibrium constant $${K_c}$$ is
85.
The lattice energy of solid $$NaCl$$ is $$180\,kcal\,mo{l^{ - 1}}$$ and enthalpy of solution is $$1\,kcal\,mo{l^{ - 1}}.$$ If the hydration energies of $$N{a^ + }$$ and $$C{l^ - }\,ions$$ are in the ratio 3 : 2, what is the enthalpy of hydration of sodium $$ion ?$$
86.
Consider the following liquid-vapour equilibrium
$${\text{Liquid }} \rightleftharpoons {\text{Vapour}}$$
Which of the following relations is correct?
A
$$\frac{{d\ln P}}{{dT}} = \frac{{ - \Delta {H_v}}}{{RT}}$$
B
$$\frac{{d\ln P}}{{d{T^2}}} = \frac{{ - \Delta {H_v}}}{{{T^2}}}$$
C
$$\frac{{d\ln P}}{{dT}} = \frac{{ - \Delta {H_v}}}{{R{T^2}}}$$
D
$$\frac{{d\ln G}}{{d{T^2}}} = \frac{{ - \Delta {H_v}}}{{R{T^2}}}$$
The given phase equilibria is $${\text{Liquid}} \rightleftharpoons {\text{Vapour}}.$$ This equilibrium states that, when liquid is heated, it converts into vapour but on cooling, it further converts into liquid, which is derived by Clausius Clapeyron and the relationship is written as,
$$\frac{{d\ln P}}{{dT}} = - \frac{{\Delta {H_v}}}{{R{T^2}}}$$
where, $$\Delta {H_v} = $$ Heat of vaporisation
87.
Which of the reaction defines $$\Delta H_f^ \circ ?$$
A
$${C_{\left( {diamond} \right)}} + {O_{2\left( g \right)}} \to C{O_{2\left( g \right)}}$$
B
$$\frac{1}{2}{H_{2\left( g \right)}} + \frac{1}{2}{F_{2\left( g \right)}} \to H{F_{\left( g \right)}}$$
C
$${N_{2\left( g \right)}} + 3{H_{2\left( g \right)}} \to 2N{H_{3\left( g \right)}}$$
D
$$C{O_{\left( g \right)}} + \frac{1}{2}{O_{2\left( g \right)}} \to C{O_{2\left( g \right)}}$$
Answer :
$$\frac{1}{2}{H_{2\left( g \right)}} + \frac{1}{2}{F_{2\left( g \right)}} \to H{F_{\left( g \right)}}$$
TIPS/Formulae :
$$\Delta H_f^ \circ $$ is the enthalpy change when 1 mole of the substance is formed from its elements in their standard states.
In (A) carbon is present in diamond however standard state of carbon is graphite . Again, in (D) $$CO$$ $$(g)$$ is involved so it can't be the right option. Further in (C) 2 moles of $$N{H_3}$$ are generated. Hence the correct option is (B).
88.
When $$1\,mole$$ of oxalic acid is treated with excess of $$NaOH$$ in dilute aqueous solution, $$106\,kJ$$ of heat is liberated. Predict the enthalpy of ionisation of the acid
A
$$4.3\,kJ\,mo{l^{ - 1}}$$
B
$$ - 4.3\,kJ\,mo{l^{ - 1}}$$
C
$$8.6\,kJ\,mo{l^{ - 1}}$$
D
$$ - 8.6\,kJ\,mo{l^{ - 1}}$$
Answer :
$$8.6\,kJ\,mo{l^{ - 1}}$$
$${H^ + }\left( {aq} \right) + O{H^ - }\left( {aq} \right) \rightleftharpoons {H_2}O\left( l \right);$$ $$\Delta H = - 57.3\,kJ\,\,....\left( {\text{i}} \right)$$
$${H_2}{C_2}{O_4} + 2O{H^ - } \rightleftharpoons $$ $${C_2}O_4^{ - - } + 2{H_2}O;\Delta H = - 106\,kJ\,\,....\left( {{\text{ii}}} \right)$$
For the second reaction the value should have been
$$\eqalign{
& 2 \times \left( { - 57.3} \right) = - 114.6\,kJ \cr
& {\text{The difference}} \cr} $$
$$\left( {114.6 - 106} \right) = 8.6\,kJ\,mo{l^{ - 1}}$$ is used to effect of the ionisation of oxalic acid.
89.
Considering entropy $$(S)$$ as a thermodynamic parameter, the criterion for the spontaneity of any process is
A
$$\Delta {S_{{\text{system}}}} + \Delta {S_{{\text{surrounding}}}} > 0$$
B
$$\Delta {S_{{\text{system}}}} - \Delta {S_{{\text{surrounding}}}} > 0$$
For spontaneous process, $$\Delta S$$ must be positive. In reversible process
$$\Delta {S_{{\text{system}}}} + \Delta {S_{{\text{surrounding}}}} = 0$$
Hence, system is present in equilibrium.
( i.e. it is not spontaneous process )
While in irreversible process
$$\Delta {S_{{\text{system}}}} + \Delta {S_{{\text{surrounding}}}} > 0$$
Hence, in the process $$\Delta S$$ is positive.
90.
Standard entropy of $${X_2},{Y_2}$$ and $$X{Y_3}$$ are 60,40 and $$50J{K^{ - 1}}\,mo{l^{ - 1}},$$ respectively. For the reaction,
$$\frac{1}{2}{X_2} + \frac{3}{2}{Y_2} \to X{Y_3},\Delta H = - 30kJ,$$ to be at equilibrium, the
temperature will be
A
$$1250 K$$
B
$$500 K$$
C
$$750 K$$
D
$$1000 K$$
Answer :
$$750 K$$
$$\eqalign{
& {\text{For a reaction to be at equilibrium}}\,\,\Delta G = 0.\,\,Since \cr
& \Delta G = \Delta H - T\Delta S\,\,{\text{so}}\,{\text{at}}\,{\text{equilibrium}}\,\,\Delta H - T\Delta S = 0 \cr
& or\,\,\Delta H = T\Delta S \cr
& {\text{For}}\,{\text{the}}\,{\text{reaction}} \cr
& \frac{1}{2}{X_2} + \frac{3}{2}{Y_2} \to X{Y_3}\,;\,\Delta H = - 30\,kJ\,\left( {{\text{given}}} \right) \cr
& {\text{Calculating}}\,\Delta S\,{\text{for}}\,{\text{the}}\,{\text{above}}\,{\text{reaction,}}\,{\text{we}}\,{\text{get}} \cr
& \Delta S = 50 - \left[ {\frac{1}{2} \times 60 + \frac{3}{2} \times 40} \right]J{K^{ - 1}} \cr
& = 50 - \left( {30 + 60} \right)J{K^{ - 1}} \cr
& = - 40J{K^{ - 1}} \cr
& {\text{At}}\,{\text{equilibrium,}}\,\,\,T\Delta S = \Delta H\,\,\,\left[ {\,\because \Delta G = 0} \right] \cr
& \therefore \,\,T \times \left( { - 40} \right) = - 30 \times 1000\,\,\left[ {\,\because 1kJ = 1000J} \right] \cr
& or\,\,\,T = \frac{{ - 30 \times 1000}}{{ - 40}}\,or\,750K \cr} $$