Learn Ionic Equilibrium MCQ questions & answers in Physical Chemistry are available for students perparing for IIT-JEE, NEET, Engineering and Medical Enternace exam.
101.
For preparing a buffer solution of $$pH\,6$$ by mixing sodium acetate and acetic acid, the ratio of the concentration of salt and acid should be $$\left( {{K_a} = {{10}^{ - 5}}} \right)$$
102.
What is the $$pH$$ of the resulting solution when equal volumes of $$0.1\,M\,NaOH$$ and $$0.1\,M\,HCl$$ are mixed?
A
12.65
B
2.0
C
7.0
D
1.04
Answer :
12.65
Key Concept When equal volumes of acid and base are mixed, then resulting solution become alkaline if concentration of base is taken high.
Let normality of the solution after mixing $$0.1\,M\,NaOH$$ and $$0.01\,M\,HCl$$ is $$N.$$
$$\eqalign{
& \therefore \,\,{N_1}{V_1} - {N_2}{V_2} = NV \cr
& {\text{or}}\,\,0.1 \times 1 - 0.01 \times 1 = N \times 2 \cr} $$
Since, normality of $$NaOH$$ is more than that of $$HCl.$$
Hence, the resulting solution is alkaline.
$$\eqalign{
& {\text{or}}\,\,\left[ {\bar OH} \right] = N = \frac{{0.09}}{2} = 0.045\,N \cr
& {\text{or}}\,\,pOH = - \,{\text{log}}\left( {0.045} \right) \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 1.35 \cr
& \therefore \,\,pH = 14 - pOH \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 14 - 1.35 \cr
& \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = 12.65 \cr} $$
103.
Which of the following statements about $$pH$$ and $${H^ + }\,ion$$ concentration is incorrect ?
A
Addition of one drop of concentrated $$HCl$$ in $$N{H_4}OH$$ solution decreases $$pH$$ of the solution.
B
A solution of the mixture of one equivalent of each of $$C{H_3}COOH$$ and $$NaOH$$ has a $$pH$$ of 7
C
$$pH$$ of pure neutral water is not zero
D
A cold and concentrated $${H_2}S{O_4}$$ has lower $${H^ + }\,ion$$ concentration than a dilute solution of $${H_2}S{O_4}$$
Answer :
A solution of the mixture of one equivalent of each of $$C{H_3}COOH$$ and $$NaOH$$ has a $$pH$$ of 7
$$C{H_3}COOH$$ is weak acid while $$NaOH$$ is strong base, so one equivalent of $$NaOH$$ can not be neutralized with one equivalent of $$C{H_3}COOH.$$ Hence the solution of one equivalent of each does not have $$pH$$ value as 7. Its $$pH$$ will be towards basic side as $$NaOH$$ is a strong base hence conc. of $$O{H^ - }$$ will be more than the conc. of $${H^ + }.$$
104.
Solubility product of silver bromide is 5.0 × 10-13. The
quantity of potassium bromide ( molar mass taken as $$120\,g\,mo{l^{ - 1}}$$ ) to be added to 1 litre of $$0.05 M$$ solution of silver
nitrate to start the precipitation of $$AgBr$$ is
A
$$1.2 \times {10^{ - 10}}g$$
B
$$1.2 \times {10^{ - 9}}g$$
C
$$6.2 \times {10^{ - 5}}g$$
D
$$5.0 \times {10^{ - 8}}g$$
Answer :
$$1.2 \times {10^{ - 9}}g$$
$$\eqalign{
& AgBr \rightleftharpoons A{g^ + } + B{r^ - } \cr
& {K_{sp}} = \left[ {A{g^ + }} \right]\left[ {B{r^ - }} \right] \cr
& {\text{For precipitation to occur}} \cr
& {\text{Tonic product > Solubility product}} \cr
& \left[ {B{r^ - }} \right] = \frac{{{K_{sp}}}}{{\left[ {A{g^ + }} \right]}} = \frac{{5 \times {{10}^{ - 13}}}}{{0.05}} = {10^{-11}} \cr} $$
i.e., precipitation just starts when $${10^{ - 11}}$$ moles of $$KBr$$ is added to $$1\ell \,\,AgN{O_3}$$ solution
∴ Number of moles of $${B{r^ - }}$$ needed from $$KBr = {10^{ - 11}}$$
∴ Mass of $$KBr = {10^{ - 11}} \times 120 = 1.2 \times {10^{ - 9}}\,g$$
105.
A certain buffer solution contains equal concentration of $${X^ - }$$ and $$HX.$$ The $${K_b}$$ for $${X^ - }$$ is $${10^{ - 10}}.$$ The $$pH$$ of the buffer is :
106.
Equimolar solutions of the following compounds are prepared separately in water. Which will have the lowest $$pH$$ value ?
A
$$BeC{l_2}$$
B
$$SrC{l_2}$$
C
$$CaC{l_2}$$
D
$$MgC{l_2}$$
Answer :
$$BeC{l_2}$$
Metal halide on hydrolysis with water form corresponding hydroxides.
The basic strength of hydroxide increases as we move down in a group. This is because of the increase in size which results in decrease of ionization energy which
weakens the strength of $$M – O$$ bonds in $$MOH$$ and thus increases the basic strength.
$$\eqalign{
& \mathop {Be{{\left( {OH} \right)}_2}}\limits_{{\text{Amphoteric}}} \,\,\,\,\,\,\,\mathop {Mg{{\left( {OH} \right)}_2}}\limits_{{\text{Weak base}}} \cr
& Ca{\left( {OH} \right)_2}\,\,\mathop {Sr{{\left( {OH} \right)}_2}}\limits_{{\text{Strong base}}} \,\,\,Ba{\left( {OH} \right)_2} \cr} $$
Hence, $$Be{\left( {OH} \right)_2}$$ will have lowest $$pH.$$
107.
The ionization constant of benzoic acid is 6.46 × 10-5 and $${K_{sp}}$$ for silver benzoate is 2.5 × 10-13. How many times is silver benzoate more soluble in a buffer of $$pH$$ = 3.19 compared to its solubility in pure water?
A
4
B
3.32
C
3.01
D
2.5
Answer :
3.32
Suppose $$S$$ is the molar solubility of silver benzoate in water, then
$${C_6}{H_5}COOA{g_{\left( s \right)}} \rightleftharpoons $$ $${C_6}{H_5}COO_{\left( {aq} \right)}^ - + Ag_{\left( {aq} \right)}^ + $$
$${K_{sp}} = {s^2}\therefore S = \sqrt {2.5 \times {{10}^{ - 13}}} $$ $$ = 5.0 \times {10^{ - 7}}\,M$$
If the solubility of salt of weak acid of ionization constant $${K_a}$$ is $$S',$$ the $${K_{sp}},{K_a}$$ and $$S'$$ are related to each other at $$pH = 3.19.$$
$$\eqalign{
& \therefore \left[ {{H^ + }} \right] = 6.46 \times {10^{ - 4}}M\,\,\,\left( {\because pH = 3.19} \right) \cr
& {K_{sp}} = S{'^{\,2}}\left[ {\frac{{{K_a}}}{{{K_a} + \left[ {{H^ + }} \right]}}} \right] \cr
& S' = {\left\{ {\frac{{2.5 \times {{10}^{ - 13}}}}{{\left[ {\frac{{6.46 \times {{10}^{ - 5}}}}{{6.46 \times {{10}^{ - 5}} + 6.46 \times {{10}^{ - 4}}}}} \right]}}} \right\}^{\frac{1}{2}}} \cr
& S' = {\left\{ {\frac{{2.5 \times {{10}^{ - 13}} \times 7.106 \times {{10}^{ - 4}}}}{{6.46 \times {{10}^{ - 5}}}}} \right\}^{\frac{1}{2}}} \cr
& \,\,\,\,\,\,\, = {\left( {2.75 \times {{10}^{ - 12}}} \right)^{\frac{1}{2}}} \cr
& \,\,\,\,\,\,\, = 1.658 \times {10^{ - 6}}\,M \cr
& \therefore \,{\text{The}}\,\,{\text{ratio}}\,\,{\text{of}}\,\frac{{S'}}{s} = \frac{{1.658 \times {{10}^{ - 6}}}}{{5.0 \times {{10}^{ - 7}}}} = 3.32 \cr} $$
Silver benzoate is 3.32 times more soluble in buffer of $$pH = 3.19$$ than in pure water.
108.
Which of the following pairs constitutes a buffer?
A
$$HN{O_2}\,{\text{and}}\,NaN{O_2}$$
B
$$NaOH\,{\text{and}}\,NaCl$$
C
$$HN{O_3}\,{\text{and}}\,N{H_4}N{O_3}$$
D
$$HCl\,{\text{and}}\,KCl$$
Answer :
$$HN{O_2}\,{\text{and}}\,NaN{O_2}$$
A pair constituent with $$HN{O_2}$$ and $$NaN{O_2}$$ because $$HN{O_2}$$ is weak acid and $$NaN{O_2}$$ is a salt of weak acid $$\left( {HN{O_2}} \right)$$ with strong base $$\left( {NaOH} \right).$$ Hence, it is an example of acidic buffer solution.
109.
Aqueous solution of acetic acid contains
A
$$C{H_3}CO{O^ - }\,{\text{and}}\,{H^ + }$$
B
$$C{H_3}CO{O^ - },{H_3}{O^ + }\,{\text{and}}\,C{H_3}COOH$$
C
$$C{H_3}CO{O^ - },{H_3}{O^ + }\,{\text{and}}\,{H^ + }$$
D
$$C{H_3}COOH,C{H_3}CO{O^ - }\,{\text{and}}\,{H^ + }$$