2.
Let $$n$$ be an odd natural number greater than 1. Then the number of zeros at the end of the sum $${99^n} + 1$$ is
A
3
B
4
C
2
D
None of these
Answer :
2
$$\eqalign{
& 1 + {99^n} = 1 + {\left( {100 - 1} \right)^n} = 1 + \left\{ {^n{C_0}{{100}^n} - {\,^n}{C_1} \cdot {{100}^{n - 1}} + ..... - {\,^n}{C_n}} \right\}\,\,{\text{because }}n{\text{ is odd}} \cr
& 1 + {99^n} = 100\left\{ {^n{C_0} \cdot {{100}^{n - 1}} - {\,^n}{C_1} \cdot {{100}^{n - 2}} + ..... - {\,^n}{C_{n - 2}} \cdot 100 + {\,^n}{C_{n - 1}}} \right\} \cr} $$
$$1 + {99^n} = 100 \times $$ integer whose units place is different from 0 ( $$n$$ having odd digit in units place).
3.
If $$x$$ is very small in magnitude compared with $$a,$$ then $${\left( {\frac{a}{{a + x}}} \right)^{\frac{1}{2}}} + {\left( {\frac{a}{{a - x}}} \right)^{\frac{1}{2}}}\,$$ can be approximately equal to
4.
The number of terms with integral co-efficients in the expansion of $${\left( {{7^{\frac{1}{3}}} + {5^{\frac{1}{2}}} \cdot x} \right)^{600}}$$ is
A
100
B
50
C
101
D
None of these
Answer :
101
$${t_{r + 1}} = {\,^{600}}{C_r} \cdot {7^{\frac{{600 - r}}{3}}} \cdot {5^{\frac{r}{2}}}{x^r}.$$
Here, $$0 \leqslant r \leqslant 600$$ and $$\frac{r}{2},200 - \frac{r}{3}$$ are integers.
∴ $$r$$ should be a multiple of 6
$$\therefore \,\,r = 0,6,12,.....,600.$$
5.
The sum of the series $$\sum\limits_{r = 1}^n {{{\left( { - 1} \right)}^{r - 1}} \cdot {\,^n}{C_r}} \left( {a - r} \right)$$ is equal to