Binomial Theorem MCQ Questions & Answers in Algebra | Maths

Learn Binomial Theorem MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

91. The greatest value of the term independent of $$x$$ in the expansion of $${\left( {x\sin p + {x^{ - 1}}\cos p} \right)^{10}},p \in R{\text{ is}}$$

A $$2^5$$
B $$\frac{{10!}}{{{2^5}{{\left( {5!} \right)}^2}}}$$
C $$\frac{{10!}}{{{{\left( {5!} \right)}^2}}}$$
D None of these
Answer :   $$\frac{{10!}}{{{2^5}{{\left( {5!} \right)}^2}}}$$

92. If $$x$$ is so small that $${x^3}$$ and higher powers of $$x$$ may be neglected, then $$\frac{{{{\left( {1 + x} \right)}^{\frac{3}{2}}} - {{\left( {1 + \frac{1}{2}x} \right)}^3}}}{{{{\left( {1 - x} \right)}^{\frac{1}{2}}}}}$$     may be approximated as

A $$1 - \frac{3}{8}{x^2}$$
B $$3x + \frac{3}{8}{x^2}$$
C $$ - \frac{3}{8}{x^2}$$
D $$\frac{x}{2} - \frac{3}{8}{x^2}$$
Answer :   $$ - \frac{3}{8}{x^2}$$

93. $$\frac{{{C_0}}}{1} + \frac{{{C_2}}}{3} + \frac{{{C_4}}}{5} + \frac{{{C_6}}}{7} + ..... = $$

A $$\frac{{{2^{n + 1}}}}{{n + 1}}$$
B $$\frac{{{2^{n + 1}} - 1}}{{n + 1}}$$
C $$\frac{{{2^{n}}}}{{n + 1}}$$
D None of these
Answer :   $$\frac{{{2^{n}}}}{{n + 1}}$$

94. If $${C_0},{C_1},{C_2},.....,{C_{15}}$$     are binomial coefficients in $${\left( {1 + x} \right)^{15}},\,$$  then $$\frac{{{C_1}}}{{{C_0}}} + 2\frac{{{C_2}}}{{{C_1}}} + 3\frac{{{C_3}}}{{{C_2}}} + ..... + 15\frac{{{C_{15}}}}{{{C_{14}}}} = $$

A 60
B 120
C 64
D 124
Answer :   120

95. Given positive integers $$r > 1, n > 2$$   and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$    terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$  are equal. Then

A $$n = 2r$$
B $$n = 2r + 1$$
C $$n = 3r$$
D none of these
Answer :   $$n = 2r$$

96. The value of $$\sum\limits_{r = 1}^{10} {r \cdot \frac{{^n{C_r}}}{{^n{C_{r - 1}}}}} $$   is equal to

A $$5\left( {2n - 9} \right)$$
B $$10n$$
C $$9\left( {n - 4} \right)$$
D None of these
Answer :   $$5\left( {2n - 9} \right)$$

97. The coefficient of $$x^{53}$$ in the expansion $$\sum\limits_{m = 0}^{100} {^{100}{C_m}} {\left( {x - 3} \right)^{100 - m}}{2^m}\,$$     is

A $$^{100}{C_{47}}$$
B $$^{100}{C_{53}}$$
C $$ - ^{100}{C_{53}}$$
D $$ - ^{100}{C_{100}}$$
Answer :   $$ - ^{100}{C_{53}}$$

98. The value of $$^{50}{C_4} + \sum\limits_{r = 1}^6 {^{56 - r}{C_3}} $$    is

A $$^{55}{C_4}$$
B $$^{55}{C_3}$$
C $$^{56}{C_3}$$
D $$^{56}{C_4}$$
Answer :   $$^{56}{C_4}$$

99. The term independent of $$x$$ in expansion of $${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$$     is

A 4
B 120
C 210
D 310
Answer :   210

100. The value of $$\left( {^{21}{C_1} - {\,^{10}}{C_1}} \right) + \left( {^{21}{C_2} - {\,^{10}}{C_2}} \right) + \left( {^{21}{C_3} - {\,^{10}}{C_3}} \right) + \left( {^{21}{C_4} - {\,^{10}}{C_4}} \right) + ...... + \left( {^{21}{C_{10}} - {\,^{10}}{C_{10}}} \right)$$                  is:

A $${2^{20}} - {2^{10}}$$
B $${2^{21}} - {2^{11}}$$
C $${2^{21}} - {2^{10}}$$
D $${2^{20}} - {2^{9}}$$
Answer :   $${2^{20}} - {2^{10}}$$