$${\left( {x\sin p + {x^{ - 1}}\cos p} \right)^{10}},$$ general term is $${T_{r + 1}} = {\,^{10}}{C_r}{\left( {x\sin p} \right)^{10 - r}}{\left( {{x^{ - 1}}\cos p} \right)^r}.$$
For the term independent of $$x$$ we have $$10 - 2r = 0$$ or $$r = 5$$
Hence, independent term is
$$^{10}{C_5}\,{\sin ^5}P{\cos ^5}P = {\,^{10}}{C_5}\frac{{{{\sin }^5}2p}}{{32}}$$
which is greatest when $$\sin 2p = 1.$$
92.
If $$x$$ is so small that $${x^3}$$ and higher powers of $$x$$ may be neglected, then $$\frac{{{{\left( {1 + x} \right)}^{\frac{3}{2}}} - {{\left( {1 + \frac{1}{2}x} \right)}^3}}}{{{{\left( {1 - x} \right)}^{\frac{1}{2}}}}}$$ may be approximated as
94.
If $${C_0},{C_1},{C_2},.....,{C_{15}}$$ are binomial coefficients in $${\left( {1 + x} \right)^{15}},\,$$ then $$\frac{{{C_1}}}{{{C_0}}} + 2\frac{{{C_2}}}{{{C_1}}} + 3\frac{{{C_3}}}{{{C_2}}} + ..... + 15\frac{{{C_{15}}}}{{{C_{14}}}} = $$
A
60
B
120
C
64
D
124
Answer :
120
General term of the given series is
$$r\frac{{^n{C_r}}}{{^n{C_{r - 1}}}} = n + 1 - r$$
By taking summation over $$n,$$ we get
$$\eqalign{
& \sum\limits_1^{15} {r\frac{{^n{C_r}}}{{^n{C_{r - 1}}}}} = \sum\limits_{n = 1}^{15} {\left( {n + 1 - r} \right)} = \sum\limits_1^{15} {\left( {16 - r} \right)} \cr
& = 16 \times 15 - \frac{1}{2} \cdot 15 \times 16 \cr} $$
By using sum of $$n$$ natural numbers $$ = \frac{{n\left( {n + 1} \right)}}{2}$$
$$= 240 - 120 = 120$$
95.
Given positive integers $$r > 1, n > 2$$ and that the co - efficient of $${\left( {3r} \right)^{th}}\,{\text{and }}{\left( {r + 2} \right)^{th}}$$ terms in the binomial expansion of $${\left( {1 + x} \right)^{2n}}$$ are equal. Then
A
$$n = 2r$$
B
$$n = 2r + 1$$
C
$$n = 3r$$
D
none of these
Answer :
$$n = 2r$$
Given that $$r$$ and $$n$$ are +ve integers such that $$r > 1, n > 2$$
Also in the expansion of $${\left( {1 + x} \right)^{2n}}$$
co - eff. of $${\left( {3r} \right)^{th}}$$ term = co - eff. of $${\left( {r + 2} \right)^{th}}$$ term
$$\eqalign{
& \Rightarrow \,{\,^{2n}}{C_{3r - 1}} = {\,^{2n}}{C_{r + 1}} \cr
& \Rightarrow \,\,3r - 1 = r + 1\,\,{\text{or }}3r - 1 + r + 1 = 2n \cr
& \Rightarrow \,\,r = 1\,\,{\text{or }}2r = n \cr
& {\text{But }}\,r > 1 \cr
& \therefore \,\,n = 2r \cr} $$
96.
The value of $$\sum\limits_{r = 1}^{10} {r \cdot \frac{{^n{C_r}}}{{^n{C_{r - 1}}}}} $$ is equal to
99.
The term independent of $$x$$ in expansion of $${\left( {\frac{{x + 1}}{{{x^{\frac{2}{3}}} - {x^{\frac{1}{3}}} + 1}} - \frac{{x - 1}}{{x - {x^{\frac{1}{2}}}}}} \right)^{10}}$$ is
A
4
B
120
C
210
D
310
Answer :
210
Given expression can be written as
$$\eqalign{
& {\left( {\left( {{x^{\frac{1}{3}}} + 1} \right) - \left( {\frac{{\sqrt x + 1}}{{\sqrt x }}} \right)} \right)^{10}} \cr
& = {\left( {{x^{\frac{1}{3}}} + 1 - 1 - \frac{1}{{\sqrt x }}} \right)^{10}} \cr
& = {\left( {{x^{\frac{1}{3}}} - {x^{ - \frac{1}{2}}}} \right)^{10}} \cr} $$
General term $$ = {T_{r + 1}} = {\,^{10}}{C_r}{\left( {{x^{\frac{1}{3}}}} \right)^{10 - r}}{\left( { - {x^{ - \frac{1}{2}}}} \right)^r}$$
$$ = {\,^{10}}{C_r}{x^{\frac{{10 - r}}{3}}}.{\left( { - 1} \right)^r}.{x^{ - \frac{r}{2}}} = {\,^{10}}{C_r}{\left( { - 1} \right)^r}.{x^{\frac{{10 - r}}{3}.\frac{r}{2}}}$$
Term will be independent of $$x$$ when $$\frac{{10 - r}}{3} - \frac{r}{2} = 0$$
$$ \Rightarrow \,\,r = 4$$
So, required term $$ = {T_5} = {\,^{10}}{C_4} = 210$$
100.
The value of $$\left( {^{21}{C_1} - {\,^{10}}{C_1}} \right) + \left( {^{21}{C_2} - {\,^{10}}{C_2}} \right) + \left( {^{21}{C_3} - {\,^{10}}{C_3}} \right) + \left( {^{21}{C_4} - {\,^{10}}{C_4}} \right) + ...... + \left( {^{21}{C_{10}} - {\,^{10}}{C_{10}}} \right)$$ is: