Binomial Theorem MCQ Questions & Answers in Algebra | Maths
Learn Binomial Theorem MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
111.
Co-efficient of $${x^{11}}$$ in the expansion of $${\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}}$$ is
A
1051
B
1106
C
1113
D
1120
Answer :
1113
Co-eff. of $${x^{11}}$$ in exp. of $${\left( {1 + {x^2}} \right)^4}{\left( {1 + {x^3}} \right)^7}{\left( {1 + {x^4}} \right)^{12}}$$
$$ = \left( {{\text{co-eff}}{\text{. of }}{x^a}} \right) \times \left( {{\text{co-eff}}{\text{. of }}{x^b}} \right) \times \left( {{\text{co-eff}}{\text{. of }}{x^c}} \right)$$
Such that $$a + b + c = 11$$
Here $$a = 2m, b = 3n, c = 4p$$
∴ $$2m + 3n + 4p = 11$$
Case l : $$m = 0, n = 1, p = 2$$
Case ll : $$m = 1, n = 3, p = 0$$
Case III : $$m = 2, n = 1, p = 1$$
Case IV : $$m = 4, n = 1, p = 0$$
∴ Required co-eff.
$$\eqalign{
& = {\,^4}{C_0} \times {\,^7}{C_1} \times {\,^{12}}{C_2} + {\,^4}{C_1} \times {\,^7}{C_3} \times {\,^{12}}{C_0} + {\,^4}{C_2} \times {\,^7}{C_1} \times {\,^{12}}{C_1} + {\,^4}{C_4} \times {\,^7}{C_1} \times {\,^{12}}{C_0} \cr
& = 462 + 140 + 504 + 7 \cr
& = 1113 \cr} $$
112.
In the binomial expansion of $${\left( {a - b} \right)^n},n \geqslant 5,$$ the sum of the $${5^{th}}$$ and $${6^{th}}$$ terms is zero. Then $$\frac{a}{b}$$ equals
116.
$$r$$ and $$n$$ are positive integers $$r > 1, n > 2$$ and co - efficient of $${\left( {r + 2} \right)^{th}}$$ term and $$3{r^{th}}$$ term in the expansion of $${\left( {1 + x} \right)^{2n}}$$ are equal, then $$n$$ equals
117.
The number of integral terms in the expansion of $${\left( {\sqrt 3 + \root 8 \of 5 } \right)^{256}}$$ is
A
35
B
32
C
33
D
34
Answer :
33
$$\eqalign{
& {T_{r + 1}} = {\,^{256}}{C_r}{\left( {\sqrt 3 } \right)^{256 - r}}{\left( {^8\sqrt 5 } \right)^r} \cr
& \,\,\,\,\,\,\, = {\,^{256}}{C_r}{\left( 3 \right)^{\frac{{256 - r}}{2}}}{\left( 5 \right)^{\frac{r}{8}}} \cr} $$
Terms will be integral if $$\frac{{256 - r}}{2}\& \frac{r}{8}$$ both are +ve
integer, which is so if $$r$$ is an integral multiple of 8. As $$0 \leqslant r \leqslant 256$$
∴ $$r$$ = 0, 8, 16, 24, . . . . . , 256, total 33 values.
118.
The co-efficient of $${x^3}{y^4}z$$ in the expansion of $${\left( {1 + x + y - z} \right)^9}$$ is