Binomial Theorem MCQ Questions & Answers in Algebra | Maths
Learn Binomial Theorem MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
141.
What are the values of $$k$$ if the term independent of $$x$$ in the expansion of $${\left( {\sqrt x + \frac{k}{{{x^2}}}} \right)^{10}}\,$$ is 405 ?
142.
If $$A = \sum\limits_{n = 1}^\infty {\frac{{2n}}{{\left( {2n - 1} \right)!}},B = \sum\limits_{n = 1}^\infty {\frac{{2n}}{{\left( {2n + 1} \right)!}}} } $$ then $$AB$$ is equal to
A
$$e^2$$
B
$$e$$
C
$$e + e^2$$
D
$$1$$
Answer :
$$1$$
$$\eqalign{
& A = \sum\limits_{n = 1}^\infty {\frac{{2n - 1 + 1}}{{\left( {2n - 1} \right)!}}} \cr
& = \sum\limits_{n = 1}^\infty {\left[ {\frac{1}{{\left( {2n - 2} \right)!}} + \frac{1}{{\left( {2n - 1} \right)!}}} \right]} \cr
& = 1 + \frac{1}{{1!}} + \frac{1}{{2!}} + \frac{1}{{3!}} + ..... = e \cr} $$
Similarly $$B = e^{- 1}$$ as terms will be alternately positive and negative.
$$\therefore AB = e \cdot {e^{ - 1}} = 1$$
143.
If the co-efficient of the $${5^{th}}$$ term be the numerically greatest co-efficient in the expansion of $${\left( {1 - x} \right)^n}$$ then the positive integral value of $$n$$ is
A
9
B
8
C
7
D
10
Answer :
8
In $${\left( {1 - x} \right)^n}$$ the numerically greatest co-efficient is the middle co-efficient.
From the question the middle term is the $${5^{th}}$$ term.
∴ there will be 9 terms. So, $$n = 8.$$
144.
If the $${r^{th}}$$ term is the middle term in the expansion of $${\left( {{x^2} - \frac{1}{{2x}}} \right)^{20}}$$ then the $${\left( {r + 3} \right)^{th}}$$ term is
A
$$^{20}{C_{14}} \cdot \frac{1}{{{2^{14}}}} \cdot x$$
B
$$^{20}{C_{12}} \cdot \frac{1}{{{2^{12}}}} \cdot {x^2}$$
C
$$ - \frac{1}{{{2^{13}}}}\,{ \cdot ^{20}}{C_7} \cdot x$$