Binomial Theorem MCQ Questions & Answers in Algebra | Maths
Learn Binomial Theorem MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
11.
The number of terms in the expansion of $${\left( {{x^2} + 1 + \frac{1}{{{x^2}}}} \right)^n},n \in N,$$ is
A
$$2n$$
B
$$3n$$
C
$$2n + 1$$
D
$$3n + 1$$
Answer :
$$2n + 1$$
$${\left\{ {1 + \left( {{x^2} + \frac{1}{{{x^2}}}} \right)} \right\}^n} = {\,^n}{C_0} + {\,^n}{C_1}\left( {{x^2} + \frac{1}{{{x^2}}}} \right) + {\,^n}{C_2}{\left( {{x^2} + \frac{1}{{{x^2}}}} \right)^2} + ..... + {\,^n}{C_n}{\left( {{x^2} + \frac{1}{{{x^2}}}} \right)^n}$$
Here, all the terms are positive and will contain powers
$${\left( {{x^2}} \right)^0},{\left( {{x^2}} \right)^1},{\left( {{x^2}} \right)^2},.....,{\left( {{x^2}} \right)^n},{\left( {{x^2}} \right)^{ - n}},{\left( {{x^2}} \right)^{ - \left( {n - 1} \right)}},.....,{\left( {{x^2}} \right)^{ - 1}}\,{\text{only}}{\text{.}}$$
∴ the number of terms will be $$2n + 1.$$
12.
The minimum positive integral value of $$m$$ such that $${\left( {1073} \right)^{71}} - m$$ may be divisible by 10, is
A
1
B
3
C
7
D
9
Answer :
7
$$\eqalign{
& {\left( {1073} \right)^{71}} - m = {\left( {73 + 1000} \right)^{71}} - m \cr
& = {\,^{71}}{C_0}{\left( {73} \right)^{71}} + {\,^{71}}{C_1}{\left( {73} \right)^{70}}\left( {1000} \right) + {\,^{71}}{C_2}{\left( {73} \right)^{69}}{\left( {1000} \right)^2} + ..... + {\,^{71}}{C_{71}}{\left( {1000} \right)^{71}} - m \cr} $$
Above will be divisible by 10 if $$^{71}{C_0}{\left( {73} \right)^{71}}$$ is divisible by 10
Now, $$^{71}{C_0}{\left( {73} \right)^{71}} = {\left( {73} \right)^{70}} \cdot 73 = {\left( {{{73}^2}} \right)^{35}} \cdot 73$$
The last digit of $$73^2$$ is 9, so the last digit of $${\left( {{{73}^2}} \right)^{35}}$$ is 9.
$$\therefore $$ Last digit of $${\left( {{{73}^2}} \right)^{35}} \cdot 73{\text{ is }}7$$
Hence, the minimum positive integral value of $$m$$ is 7, so that it is divisible by 10.
13.
For natural numbers $$m, n$$ if $${\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} = 1 + {a_1}y + {a_2}{y^2} + .....$$ and $${a_1} = {a_2} = 10,$$ then $$\left( {m,n} \right)$$ is
A
$$\left( {20,45} \right)$$
B
$$\left( {35,20} \right)$$
C
$$\left( {45,35} \right)$$
D
$$\left( {35,45} \right)$$
Answer :
$$\left( {35,45} \right)$$
$$\eqalign{
& {\left( {1 - y} \right)^m}{\left( {1 + y} \right)^n} \cr
& = \left[ {1 - {\,^m}{C_1}y + {\,^y}{C_2}{y^2} - .....} \right]\left[ {1 + {\,^n}{C_1}y + {\,^n}{C_2}{y^2} + .....} \right] \cr
& = 1 + \left( {n - m} \right)y + \left\{ {\frac{{m\left( {m - 1} \right)}}{2} + \frac{{n\left( {n - 1} \right)}}{2} - mn} \right\}{y^2} + ..... \cr} $$
By comparing coefficients with the given expression, we get
$$\eqalign{
& \therefore {a_1} = n - m = 10{\text{ and }}{a_2} = \frac{{{m^2} + {n^2} - m - n - 2mn}}{2} = 10 \cr
& {\text{So, }}n - m = 10{\text{ and }}{\left( {m - n} \right)^2} - \left( {m + n} \right) = 20 \cr
& \Rightarrow m + n = 80 \cr
& \therefore m = 35,n = 45 \cr} $$
14.
If $$n$$ is a positive integer, then $${\left( {\sqrt 3 + 1} \right)^{2n}} - {\left( {\sqrt 3 - 1} \right)^{2n}}$$ is:
16.
The sum of the rational terms in the expansion of $${\left( {\sqrt 2 + {3^{\frac{1}{5}}}} \right)^{10}}$$ is equal to
A
40
B
41
C
42
D
0
Answer :
41
Here, $${T_{r + 1}} = {\,^{10}}{C_r}{\left( {\sqrt 2 } \right)^{10 - r}}{\left( {{3^{\frac{1}{5}}}} \right)^r},$$ where $$r = 0, 1, 2, ..... ,10.$$
We observe that in general term $$T_{r + 1}$$ powers of 2 and 3 are $$\frac{1}{2}\left( {10 - r} \right)$$ and $$\frac{1}{5}r$$ respectively and $$0 \leqslant r \leqslant 10.$$
So, both these powers will be integers together only when $$r = 0$$ or 10
$$\therefore $$ Sum of required terms $$ = {T_1} + {T_{11}}$$
$$ = {\,^{10}}{C_0}{\left( {\sqrt 2 } \right)^{10}} + {\,^{10}}{C_{10}}{\left( {{3^{\frac{1}{5}}}} \right)^{10}} = 32 + 9 = 41$$
17.
The sum of the series $$^{20}{C_0} - {\,^{20}}{C_1} + {\,^{20}}{C_2} - {\,^{20}}{C_3} + ..... - ..... + {\,^{20}}{C_{10}}$$ is
18.
The coefficient of $$a^3 b^4 c$$ in the expansion of $${\left( {1 + a - b + c} \right)^9}$$ is equal to
A
$$\frac{{9!}}{{3!6!}}$$
B
$$\frac{{9!}}{{4!5!}}$$
C
$$\frac{{9!}}{{3!5!}}$$
D
$$\frac{{9!}}{{3!4!}}$$
Answer :
$$\frac{{9!}}{{3!4!}}$$
$$\eqalign{
& {\left( {1 + a - b + c} \right)^9} \cr
& = \sum {\frac{{9!}}{{{x_1}!{x_2}!{x_3}!{x_4}!}} \cdot {{\left( 1 \right)}^{{x_1}}}{{\left( a \right)}^{{x_2}}}{{\left( { - b} \right)}^{{x_3}}}{{\left( c \right)}^{{x_4}}}} \cr} $$
$$ \Rightarrow $$ Coefficient of $${a^3}{b^4}c = \frac{{9!}}{{1!3!4!1!}} = \frac{{9!}}{{3!4!}}$$
19.
The sum \[\sum\limits_{i = 0}^m {\left( {\begin{array}{*{20}{c}}
{10}\\
i
\end{array}} \right)} \left( {\begin{array}{*{20}{c}}
{20}\\
{m - i}
\end{array}} \right),\] \[\left( {{\rm{where }}\left( {\begin{array}{*{20}{c}}
p\\
q
\end{array}} \right) = 0\,\,{\rm{if }}\,p < q} \right)\] is maximum when $$m$$ is
A
5
B
10
C
15
D
20
Answer :
15
$$\sum\limits_{i = 0}^m {^{10}{C_i}^{20}{C_{m - i}} = {\,^{10}}{C_0}{\,^{20}}{C_m} + {\,^{10}}{C_1}{\,^{20}}{C_{m - 1}} + {\,^{10}}{C_2}{\,^{20}}{C_{m - 2}}} + ..... + {\,^{10}}{C_m}{\,^{20}}{C_0}$$
= Co-eff of $${x^m}$$ in the expansion of product $${\left( {1 + x} \right)^{10}}{\left( {1 + x} \right)^{20}}$$
= Co-eff. of $${x^m}$$ in the expansion of $${\left( {1 + x} \right)^{30}}$$
$$ = \,{\,^{30}}{C_m}$$
To get max. value of given sum, $$^{30}{C_m}\,$$ should be max.
which is so when $$m = \frac{{30}}{2} = 15.$$
\[\left[ {{\rm{Using\, the\, fact\, that\, max }}\left( {^n{C_r}} \right) = \left\{ \begin{array}{l}
^n{C_{\frac{n}{2}}}\,\,{\rm{if }}\,n\,{\rm{is\, even}}\\
^n{C_{\frac{{n + 1}}{2}}}\,{\rm{if }}\,n\,{\rm{is\, odd}}
\end{array} \right.} \right]\]