Binomial Theorem MCQ Questions & Answers in Algebra | Maths

Learn Binomial Theorem MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

21. Sum of coefficients in the exansion of $${\left( {x + 2y + 3z} \right)^{10}}\,$$   is

A $${2^{10}}$$
B $${3^{10}}$$
C $$1$$
D $${6^{10}}$$
Answer :   $${6^{10}}$$

22. The coefficient of $$x^{13}$$ in the expansion of $${\left( {1 - x} \right)^5}{\left( {1 + x + {x^2} + {x^3}} \right)^4}$$     is

A $$4$$
B $$- 4$$
C $$0$$
D None of these
Answer :   $$4$$

23. The ninth term in the expansion of $${\left\{ {{3^{{{\log }_3}\sqrt {{{25}^{x - 1}} + 7} }} + {3^{ - \frac{1}{8}{{\log }_3}\left( {{5^{x - 1}} + 1} \right)}}} \right\}^{10}}$$       is equal to 180, then $$x$$ is

A a prime number
B an irrational number
C has non-zero fractional part
D None of these
Answer :   an irrational number

24. The greatest value of the term independent of $$x$$ in the expansion of $${\left( {x\sin \alpha + {x^{ - 1}}\cos \alpha } \right)^{10}},\alpha \in R,$$      is

A $${2^5}$$
B $$\frac{{10!}}{{{{\left( {5!} \right)}^2}}}$$
C $$\frac{1}{{{2^5}}} \cdot \frac{{10!}}{{{{\left( {5!} \right)}^2}}}$$
D None of these
Answer :   $$\frac{1}{{{2^5}}} \cdot \frac{{10!}}{{{{\left( {5!} \right)}^2}}}$$

25. If the middle term in the expansion of $${\left( {\frac{1}{x} + x\sin x} \right)^{10}}$$   equal to $$7\frac{7}{8}$$ then $$x$$ is equal to ; $$\left( {n \in I} \right)$$

A $$2n\pi \pm \frac{\pi }{6}$$
B $$n\pi + \frac{\pi }{6}$$
C $$n\pi + {\left( { - 1} \right)^n}\frac{\pi }{6}$$
D $$n\pi + {\left( { - 1} \right)^n}\frac{5\pi }{6}$$
Answer :   $$n\pi + {\left( { - 1} \right)^n}\frac{\pi }{6}$$

26. The sum $$\frac{1}{2}{\,^{10}}{C_0} - {\,^{10}}{C_1} + 2 \cdot {\,^{10}}{C_2} - {2^2} \cdot {\,^{10}}{C_3} + ..... + {2^9} \cdot {\,^{10}}{C_{10}}$$           is equal to

A $$\frac{1}{2}$$
B $$0$$
C $$\frac{1}{2} \cdot {3^{10}}$$
D None of these
Answer :   $$\frac{1}{2}$$

27. The interval in which $$x$$ must lies so that the numerically greatest term in the expansion of $${\left( {1 - x} \right)^{21}}\,$$  has the greatest coefficient is, $$\left( {x > 0} \right).$$

A $$\left[ {\frac{5}{6},\frac{6}{5}} \right]$$
B $$\left( {\frac{5}{6},\frac{6}{5}} \right)$$
C $$\left( {\frac{4}{5},\frac{5}{4}} \right)$$
D $$\left[ {\frac{4}{5},\frac{5}{4}} \right]$$
Answer :   $$\left( {\frac{5}{6},\frac{6}{5}} \right)$$

28. The approximate value of $${\left( {1.0002} \right)^{3000}}$$   is

A 1.6
B 1.4
C 1.8
D 1.2
Answer :   1.6

29. In the binomial expansion $${\left( {a + bx} \right)^{ - 3}} = \frac{1}{8} + \frac{9}{8}x + .....,$$      then the value of $$a$$ and $$b$$ are :

A $$a = 2 , b = 3$$
B $$a = 2 , b = - 6$$
C $$a = 3 , b = 2$$
D $$a = - 3 , b = 2$$
Answer :   $$a = 2 , b = - 6$$

30. The greatest co-efficient in the expansion of $${\left( {1 + x} \right)^{2n}}$$  is

A $$\frac{{1 \cdot 3 \cdot 5 \cdot ..... \cdot \left( {2n - 1} \right)}}{{n!}} \cdot {2^n}$$
B $$^{2n}{C_{n - 1}}$$
C $$^{2n}{C_{n + 1}}$$
D None of these
Answer :   $$\frac{{1 \cdot 3 \cdot 5 \cdot ..... \cdot \left( {2n - 1} \right)}}{{n!}} \cdot {2^n}$$