Binomial Theorem MCQ Questions & Answers in Algebra | Maths

Learn Binomial Theorem MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

31. For $$2 \leqslant r \leqslant n,$$   \[\left( {\begin{array}{*{20}{c}} n\\ r \end{array}} \right) + 2\left( {\begin{array}{*{20}{c}} n\\ {r - 1} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} n\\ {r - 2} \end{array}} \right) = \]

A \[\left( {\begin{array}{*{20}{c}} {n + 1}\\ {r - 1} \end{array}} \right)\]
B \[2\left( {\begin{array}{*{20}{c}} {n + 1}\\ {r + 1} \end{array}} \right)\]
C \[2\left( {\begin{array}{*{20}{c}} {n + 2}\\ r \end{array}} \right)\]
D \[\left( {\begin{array}{*{20}{c}} {n + 2}\\ r \end{array}} \right)\]
Answer :   \[\left( {\begin{array}{*{20}{c}} {n + 2}\\ r \end{array}} \right)\]

32. If $$^{n - 1}{C_r} = \left( {{k^2} - 3} \right){\,^n}{C_{r + 1}},$$     then $$k \in $$

A $$\left( { - \infty , - 2} \right]$$
B $$\left[ {2,\infty } \right)$$
C $$\left[ { - \sqrt 3 ,\sqrt 3 } \right]$$
D $$\left( {\sqrt 3 ,2} \right]$$
Answer :   $$\left( {\sqrt 3 ,2} \right]$$

33. The value of \[\left( {\begin{array}{*{20}{c}} {30}\\ 0 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {30}\\ {10} \end{array}} \right) - \left( {\begin{array}{*{20}{c}} {30}\\ 1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {30}\\ {11} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {30}\\ 2 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {30}\\ {12} \end{array}} \right) ..... + \left( {\begin{array}{*{20}{c}} {30}\\ {20} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {30}\\ {30} \end{array}} \right)\]             is where \[\left( {\begin{array}{*{20}{c}} n\\ r \end{array}} \right) = {\,^n}{C_r}\]

A \[\left( {\begin{array}{*{20}{c}} {30}\\ {10} \end{array}} \right)\]
B \[\left( {\begin{array}{*{20}{c}} {30}\\ {15} \end{array}} \right)\]
C \[\left( {\begin{array}{*{20}{c}} {60}\\ {30} \end{array}} \right)\]
D \[\left( {\begin{array}{*{20}{c}} {31}\\ {10} \end{array}} \right)\]
Answer :   \[\left( {\begin{array}{*{20}{c}} {30}\\ {10} \end{array}} \right)\]

34. If $$x = {\left( {2 + \sqrt 3 } \right)^n},\,$$   then find the value of $$x\left( {1 - \left\{ x \right\}} \right),$$   where $${\left\{ x \right\}}$$ denotes the fractional part of $$x$$

A $$1$$
B $$2$$
C $$2^{2n}$$
D $$2^n$$
Answer :   $$1$$

35. The number of distinct terms in the expansion of $${\left( {x + y - z} \right)^{16}}$$   is

A 136
B 153
C 16
D 17
Answer :   153

36. If $$\pi \left( n \right)$$  denotes product of all binomial coefficients in $${\left( {1 + x} \right)^n},$$  then ratio of $$\pi \left( {2002} \right)$$  to $$\pi \left( {2001} \right)$$  is

A $$2002$$
B $$\frac{{{{\left( {2002} \right)}^{2001}}}}{{\left( {2001} \right)!}}$$
C $$\frac{{{{\left( {2001} \right)}^{2002}}}}{{\left( {2002} \right)!}}$$
D $$2001$$
Answer :   $$\frac{{{{\left( {2002} \right)}^{2001}}}}{{\left( {2001} \right)!}}$$

37. The sum of the co-efficients in the binomial expansion of $${\left( {\frac{1}{x} + 2x} \right)^n}$$  is equal to 6561. The constant term in the expansion is

A $$^8{C_4}$$
B $$16 \cdot {\,^8}{C_4}$$
C $$^6{C_4} \cdot {2^4}$$
D None of these
Answer :   $$16 \cdot {\,^8}{C_4}$$

38. The value of $$\frac{{{C_1}}}{2} + \frac{{{C_3}}}{4} + \frac{{{C_5}}}{6} + .....$$     is equal to

A $$\frac{{{2^n} + 1}}{{n + 1}}$$
B $$\frac{{{2^n} }}{{n + 1}}$$
C $$\frac{{{2^n} + 1}}{{n - 1}}$$
D $$\frac{{{2^n} - 1}}{{n + 1}}$$
Answer :   $$\frac{{{2^n} - 1}}{{n + 1}}$$

39. $${2^{60}}$$ when divided by 7 leaves the remainder

A 1
B 6
C 5
D 2
Answer :   1

40. If $$x$$ is so small that $$x^3$$ and higher powers of $$x$$ may be neglected, then $$\frac{{{{\left( {1 + x} \right)}^{\frac{3}{2}}} - {{\left( {1 + \frac{1}{2}x} \right)}^3}}}{{{{\left( {1 - x} \right)}^{\frac{1}{2}}}}}$$     may be approximated as

A $$1 - \frac{3}{8}{x^2}$$
B $$3x + \frac{3}{8}{x^2}$$
C $$ - \frac{3}{8}{x^2}$$
D $$\frac{x}{2} - \frac{3}{8}{x^2}$$
Answer :   $$ - \frac{3}{8}{x^2}$$