To find
$$^{30}{C_0}^{30}{C_{10}} - {\,^{30}}{C_1}^{30}{C_{11}} + {\,^{30}}{C_2}^{30}{C_{12}} - .....{ + ^{30}}{C_{20}}^{30}{C_{30}}$$
We know that
$$\eqalign{
& {\left( {1 + x} \right)^{30}}{ = ^{30}}{C_0} + {\,^{30}}{C_1}x + {\,^{30}}{C_2}{x^2} + ..... + {\,^{30}}{C_{20}}{x^{20}} + .....{\,^{30}}{C_{30}}{x^{30}}\,\,\,\,\,\,.....\left( 1 \right) \cr
& {\left( {x - 1} \right)^{30}} = {\,^{30}}{C_0}{x^{30}} - {\,^{30}}{C_1}{x^{29}} + ..... + {\,^{30}}{C_{10}}{x^{20}} - {\,^{30}}{C_{11}}{x^{19}} + {\,^{30}}{C_{12}}{x^{18}} + {.....^{30}}{C_{30}}{x^0}\,\,\,\,\,\,.....\left( 2 \right) \cr} $$
Multiplying $${\text{e}}{{\text{q}}^n}$$ (1) and (2), we get
$${\left( {{x^2} - 1} \right)^{30}} = \left( {} \right) \times \left( {} \right)$$
Equating the co - efficients of $${x^{20}}$$ on both sides, we get
$$^{30}{C_{10}} = {\,^{30}}{C_0}^{30}{C_{10}} - {\,^{30}}{C_1}^{30}{C_{11}} + {\,^{30}}{C_2}^{30}{C_{12}} - ..... + {\,^{30}}{C_{20}}^{30}{C_{30}}$$
∴ Req. value is $$^{30}{C_{10}}$$
34.
If $$x = {\left( {2 + \sqrt 3 } \right)^n},\,$$ then find the value of $$x\left( {1 - \left\{ x \right\}} \right),$$ where $${\left\{ x \right\}}$$ denotes the fractional part of $$x$$
35.
The number of distinct terms in the expansion of $${\left( {x + y - z} \right)^{16}}$$ is
A
136
B
153
C
16
D
17
Answer :
153
$${\left( {x + y - z} \right)^{16}} = {\,^{16}}{C_0}{x^{16}} + {\,^{16}}{C_1}{x^{15}}\left( {y - z} \right) + ..... + {\,^{16}}{C_r}{x^{16 - r}}{\left( {y - z} \right)^r} + ..... + {\,^{16}}{C_{16}}{\left( {y - z} \right)^{16}}.$$
Clearly, all the terms are distinct.
∴ the number of distinct terms
$$ = 1 + 2 + 3 + ..... + 17 = \frac{{17 \times 18}}{2}.$$
36.
If $$\pi \left( n \right)$$ denotes product of all binomial coefficients in $${\left( {1 + x} \right)^n},$$ then ratio of $$\pi \left( {2002} \right)$$ to $$\pi \left( {2001} \right)$$ is
A
$$2002$$
B
$$\frac{{{{\left( {2002} \right)}^{2001}}}}{{\left( {2001} \right)!}}$$
C
$$\frac{{{{\left( {2001} \right)}^{2002}}}}{{\left( {2002} \right)!}}$$
37.
The sum of the co-efficients in the binomial expansion of $${\left( {\frac{1}{x} + 2x} \right)^n}$$ is equal to 6561. The constant term in the expansion is
A
$$^8{C_4}$$
B
$$16 \cdot {\,^8}{C_4}$$
C
$$^6{C_4} \cdot {2^4}$$
D
None of these
Answer :
$$16 \cdot {\,^8}{C_4}$$
The sum of all the co-efficients in an expansion is obtained by putting $$x = 1$$ in the expression.
$$\eqalign{
& \therefore \,\,{\left( {\frac{1}{1} + 2 \cdot 1} \right)^n} = 6561 \cr
& \therefore \,\,{3^n} = {3^8}\,\,\,\,\,\,\,\therefore \,\,n = 8. \cr
& {\text{In}}{\left( {\frac{1}{x} + 2x} \right)^8},{t_{r + 1}} = {\,^8}{C_r} \cdot {\left( {\frac{1}{x}} \right)^{8 - r}} \cdot {\left( {2x} \right)^r}. \cr} $$
This is a constant if $$2r - 8 = 0,\,\,{\text{i}}{\text{.e}}{\text{., }}r = 4.$$
∴ the constant term $$ = {t_5} = {\,^8}{C_4} \cdot {2^4}.$$
38.
The value of $$\frac{{{C_1}}}{2} + \frac{{{C_3}}}{4} + \frac{{{C_5}}}{6} + .....$$ is equal to
40.
If $$x$$ is so small that $$x^3$$ and higher powers of $$x$$ may be neglected, then $$\frac{{{{\left( {1 + x} \right)}^{\frac{3}{2}}} - {{\left( {1 + \frac{1}{2}x} \right)}^3}}}{{{{\left( {1 - x} \right)}^{\frac{1}{2}}}}}$$ may be approximated as