Binomial Theorem MCQ Questions & Answers in Algebra | Maths

Learn Binomial Theorem MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

41. The number of real negative terms in the binomial expansion of $${\left( {1 + ix} \right)^{4n - 2}},n \in N,x > 0,$$      is

A $$n$$
B $$n + 1$$
C $$n - 1$$
D $$2n$$
Answer :   $$n$$

42. Find the $$7^{th}$$ term from the end in the expansion of $${\left( {x - \frac{2}{{{x^2}}}} \right)^{10}}.$$

A $$^{10}{C_4}$$
B $$^{10}{C_4} \cdot {2^4}x$$
C $${2^4} \cdot {x^2}$$
D $$^{10}{C_4} \cdot {2^4}\left( {\frac{1}{{{x^2}}}} \right)$$
Answer :   $$^{10}{C_4} \cdot {2^4}\left( {\frac{1}{{{x^2}}}} \right)$$

43. The coefficient of $$x^3$$ in the expansion of $${\left( {1 - x + {x^2}} \right)^5}$$   is

A $$10$$
B $$- 20$$
C $$- 50$$
D $$- 30$$
Answer :   $$- 30$$

44. The number of term in the expansion of $${\left[ {{{\left( {x + 4y} \right)}^3}{{\left( {x - 4y} \right)}^3}} \right]^2}$$     is

A 6
B 7
C 8
D 32
Answer :   7

45. In the binomial expansion of $${\left( {a - b} \right)^n},n \geqslant 5,$$    the sum of $${5^{th}}$$ and $${6^{th}}$$ terms is zero, then $$\frac{a}{b}$$ equals

A $$\frac{{n - 5}}{6}$$
B $$\frac{{n - 4}}{5}$$
C $$\frac{5}{{n - 4}}$$
D $$\frac{6}{{n - 5}}$$
Answer :   $$\frac{{n - 4}}{5}$$

46. The remainder left out when $${8^{2n}} - {\left( {62} \right)^{2n + 1}}$$   is divided by 9 is:

A 2
B 7
C 8
D 0
Answer :   2

47. If the second term in the expansion $${\left( {\root {13} \of a + \frac{a}{{\sqrt {{a^{ - 1}}} }}} \right)^n}$$   is $$14{a^{\frac{5}{2}}},$$  then $$\frac{{^n{C_3}}}{{^n{C_2}}} = $$

A 4
B 3
C 12
D 6
Answer :   4

48. The last term in the binomial expansion of $${\left( {\root 3 \of 2 - \frac{1}{{\sqrt 2 }}} \right)^n}{\text{is }}{\left( {\frac{1}{{3 \cdot \root 3 \of 9 }}} \right)^{{{\log }_3}8}}.$$      Then the $${5^{th}}$$ term from the beginning is

A $$^{10}{C_6}$$
B $$2{ \cdot ^{10}}{C_4}$$
C $$\frac{1}{2}{ \cdot ^{10}}{C_4}$$
D None of these
Answer :   $$^{10}{C_6}$$

49. The coefficient of $$x^{83}$$ in $${\left( {1 + x + {x^2} + {x^3} + {x^4}} \right)^n}{\left( {1 - x} \right)^{n + 3}},\,$$       is $$ - {\,^n}{C_{2\lambda }},$$  then find the value of $$\lambda$$

A 12
B 10
C 9
D 8
Answer :   8

50. Co-efficient of $${t^{24}}$$ in $${\left( {1 + {t^2}} \right)^{12}}\left( {1 + {t^{12}}} \right)\left( {1 + {t^{24}}} \right)$$      is

A $$^{12}{C_6} + 3$$
B $$^{12}{C_6} + 1$$
C $$^{12}{C_6}$$
D $$^{12}{C_6} + 2$$
Answer :   $$^{12}{C_6} + 2$$