51.
The expression $$\frac{1}{{\sqrt {3x + 1} }}\left[ {{{\left( {\frac{{1 + \sqrt {3x + 1} }}{2}} \right)}^7} - {{\left( {\frac{{1 - \sqrt {3x + 1} }}{2}} \right)}^7}} \right]$$ is a polynomial in $$x$$ of degree equal to
A
3
B
4
C
2
D
5
Answer :
3
View Solution
$$\eqalign{
& \left[ {{{\left( {\frac{{1 + \sqrt {3x + 1} }}{2}} \right)}^7} - {{\left( {\frac{{1 - \sqrt {3x + 1} }}{2}} \right)}^7}} \right] \cr
& = \frac{1}{{\sqrt {3x + 1} }}\left[ {\frac{{{{\left( {1 + \sqrt {3x + 1} } \right)}^7} - {{\left( {1 - \sqrt {3x + 1} } \right)}^7}}}{{{2^7}}}} \right] \cr
& = \frac{1}{{\sqrt {3x + 1} }}\left[ {\frac{{2\left\{ {^7{C_1}\left( {\sqrt {3x + 1} } \right) + {\,^7}{C_3}{{\left( {\sqrt {3x + 1} } \right)}^3} + {\,^7}{C_5}{{\left( {\sqrt {3x + 1} } \right)}^5} + {\,^7}{C_7}{{\left( {\sqrt {3x + 1} } \right)}^7}} \right\}}}{{{2^7}}}} \right] \cr
& = \frac{1}{{{2^6}}}\left[ {^7{C_1} + {\,^7}{C_3}\left( {3x + 1} \right) + {\,^7}{C_5}{{\left( {3x + 1} \right)}^2} + {\,^7}{C_7}{{\left( {3x + 1} \right)}^3}} \right] \cr} $$
Clearly above is a polynomial of degree 3 in $$x.$$
52.
If the third term in the expansion of $${\left[ {x + {x^{{{\log }_{10}}x}}} \right]^5}$$ is $$10^6,\,$$ then $$x$$ may be
A
$$1$$
B
$$\sqrt {10} $$
C
$$10$$
D
$${10^{ - \frac{2}{5}}}$$
Answer :
$$10$$
View Solution
Put $${\log _{10}}x = y,$$ the given expression becomes $${\left( {x + {x^y}} \right)^5}.$$
$$\eqalign{
& {T_3} = {\,^5}{C_2} \cdot {x^3}{\left( {{x^y}} \right)^2} = 10{x^{3 + 2y}} = {10^6}\left( {{\text{given}}} \right) \cr
& \Rightarrow \left( {3 + 2y} \right){\log _{10}}x = 5{\log _{10}}10 = 5 \cr
& \Rightarrow \left( {3 + 2y} \right)y = 5 \cr
& \Rightarrow y = 1, - \frac{5}{2} \cr
& \Rightarrow {\log _{10}}x = 1{\text{ or }}{\log _{10}}x = - \frac{5}{2} \cr
& \therefore x = 10{\text{ or }}x = {\left( {10} \right)^{ - \frac{5}{2}}} \cr} $$
53.
If number of terms in the expansion of $${\left( {x - 2y + 3z} \right)^n}$$ is 45, then $$n =$$
A
$$7$$
B
$$8$$
C
$$9$$
D
$$6^{10}$$
Answer :
$$8$$
View Solution
No. of terms in the expansion $$ = {\,^{n + 3 - 1}}{C_{3 - 1}}$$
$$\eqalign{
& \therefore {\,^{n + 2}}{C_2} = 45 \cr
& \Rightarrow n = 8 \cr} $$
54.
The value of $$\left( {^7{C_0} + {\,^7}{C_1}} \right) + \left( {^7{C_1} + {\,^7}{C_2}} \right) + ..... + \left( {^7{C_6} + {\,^7}{C_7}} \right){\text{is}}$$
A
$${2^8} - 2$$
B
$${2^8} - 1$$
C
$${2^8} + 1$$
D
$${2^8} $$
Answer :
$${2^8} - 2$$
View Solution
$$\eqalign{
& \left( {^7{C_0} + {\,^7}{C_1}} \right) + \left( {^7{C_1} + {\,^7}{C_2}} \right) + ..... + \left( {^7{C_6} + {\,^7}{C_7}} \right) \cr
& = {\,^8}{C_1} + {\,^8}{C_2} + ..... + {\,^8}{C_7} = {\,^8}{C_0} + {\,^8}{C_1} + {\,^8}{C_2} + ..... + {\,^8}{C_7} + {\,^8}{C_8} - \left( {^8{C_0} + {\,^8}{C_8}} \right) \cr
& = {2^8} - 1\left( {1 + 1} \right) = {2^8} - 2. \cr} $$
55.
The sum of the series $$^{20}{C_0} - {\,^{20}}{C_1} + {\,^{20}}{C_2} - {\,^{20}}{C_3} + ..... - ..... + {\,^{20}}{C_{10}}{\text{ is}}$$
A
$$0$$
B
$$ {^{20}}{C_{10}}$$
C
$$ - {\,^{20}}{C_{10}}$$
D
$$\frac{1}{2}{\,^{20}}{C_{10}}$$
Answer :
$$\frac{1}{2}{\,^{20}}{C_{10}}$$
View Solution
We know that, $${\left( {1 + x} \right)^{20}} = {\,^{20}}{C_0} + {\,^{20}}{C_1}x + {\,^{20}}{C_2}{x^2} + .....{\,^{20}}{C_{10}}{x^{10}} + ..... + {\,^{20}}{C_{20}}{x^{20}}$$
$$\eqalign{
& {\text{Put }}x = - 1,\left( 0 \right) = {\,^{20}}{C_0} - {\,^{20}}{C_1} + {\,^{20}}{C_2} - {\,^{20}}{C_3} + ..... + {\,^{20}}{C_{10}} - {\,^{20}}{C_{11}}..... + {\,^{20}}{C_{20}} \cr
& \Rightarrow 0 = 2\left[ {^{20}{C_0} - {\,^{20}}{C_1} + {\,^{20}}{C_2} - {\,^{20}}{C_3} + ..... - {\,^{20}}{C_9}} \right] + {\,^{20}}{C_{10}} \cr
& \Rightarrow {\,^{20}}{C_{10}} = 2\left[ {^{20}{C_0} - {\,^{20}}{C_1} + {\,^{20}}{C_2} - {\,^{20}}{C_3} + ..... - {\,^{20}}{C_9} + {\,^{20}}{C_{10}}} \right] \cr
& \Rightarrow {\,^{20}}{C_0} - {\,^{20}}{C_1} + {\,^{20}}{C_2} - {\,^{20}}{C_3} + ..... + {\,^{20}}{C_{10}} = \frac{1}{2}{\,^{20}}{C_{10}} \cr} $$
56.
The co-efficient of $$x^6$$ in $$\left\{ {{{\left( {1 + x} \right)}^6} + {{\left( {1 + x} \right)}^7} + ..... + {{\left( {1 + x} \right)}^{15}}} \right\}$$ is
A
$$^{16}{C_9}$$
B
$$^{16}{C_5} - {\,^6}{C_5}$$
C
$$^{16}{C_6} - 1$$
D
None of these
Answer :
$$^{16}{C_9}$$
View Solution
Expression $$ = \frac{{{{\left( {1 + x} \right)}^6}\left\{ {1 - {{\left( {1 + x} \right)}^{10}}} \right\}}}{{1 - \left( {1 + x} \right)}} = \frac{{{{\left( {1 + x} \right)}^{16}} - {{\left( {1 + x} \right)}^6}}}{x}$$
∴ the required co-efficient
= the co-efficient of $$x^7$$ in $$\left\{ {{{\left( {1 + x} \right)}^{16}} - {{\left( {1 + x} \right)}^6}} \right\}$$
$$ = {\,^{16}}{C_7} = {\,^{16}}{C_{16 - 7}}.$$
57.
If the ratio of the $$7^{th}$$ term from the beginning to the $$7^{th}$$ term from the end in $${\left( {\root 3 \of 2 + \frac{1}{{\root 3 \of 3 }}} \right)^n}$$ is $$\frac{1}{6}$$ them $$n$$ equals to
A
10
B
9
C
8
D
12
Answer :
9
View Solution
Given, $$\frac{{{T_7}}}{{{T_{n - 7 + 2}}}} = \frac{1}{6}$$
$$\eqalign{
& \Rightarrow \frac{{^n{C_6}{{\left( {\root 3 \of 2 } \right)}^{n - 6}}{{\left( {\frac{1}{{\root 3 \of 3 }}} \right)}^6}}}{{^n{C_{n - 6}}{{\left( {\root 3 \of 2 } \right)}^6}{{\left( {\frac{1}{{\root 3 \of 3 }}} \right)}^{n - 6}}}} = \frac{1}{6} \cr
& \Rightarrow {2^{\frac{{n - 12}}{3}}} \cdot {3^{\frac{{n - 12}}{3}}} = \frac{1}{6} \cr
& \Rightarrow {6^{\frac{{n - 12}}{3}}} = {6^{ - 1}} \cr
& \therefore \frac{{n - 12}}{3} = - 1 \cr
& \Rightarrow n = 9 \cr} $$
58.
The value of $$\sum\limits_{r = 0}^n {^n{C_r}\sin \left( {rx} \right)} $$ is equal to
A
$${2^n} \cdot {\cos ^n}\frac{x}{2} \cdot \sin \frac{{nx}}{2}$$
B
$${2^n} \cdot {\sin ^n}\frac{x}{2} \cdot \cos \frac{{nx}}{2}$$
C
$${2^{n + 1}} \cdot {\cos ^n}\frac{x}{2} \cdot \sin \frac{{nx}}{2}$$
D
$${2^{n + 1}} \cdot {\sin ^n}\frac{x}{2} \cdot \cos \frac{{nx}}{2}$$
Answer :
$${2^n} \cdot {\cos ^n}\frac{x}{2} \cdot \sin \frac{{nx}}{2}$$
View Solution
$$\eqalign{
& \sum\limits_{r = 0}^n {^n{C_r}\sin \left( {rx} \right)} = \operatorname{Im} \left( {\sum\limits_{r = 0}^n {^n{C_r}{e^{irx}}} } \right) \cr
& = \operatorname{Im} \left( {\sum\limits_{r = 0}^n {^n{C_r}{{\left( {{e^{ix}}} \right)}^r}} } \right) = \operatorname{Im} \left( {{{\left( {1 + {e^{ix}}} \right)}^n}} \right) \cr
& = \operatorname{Im} {\left( {1 + \cos x + i\sin x} \right)^n} \cr
& = \operatorname{Im} {\left( {2{{\cos }^2}\frac{x}{2} + 2i\sin \frac{x}{2} \cdot \cos \frac{x}{2}} \right)^n} \cr
& = \operatorname{Im} {\left( {2\cos \frac{x}{2}\left( {\cos \frac{x}{2} + i\sin \frac{x}{2}} \right)} \right)^n} \cr
& = {2^n} \cdot {\cos ^n}\frac{x}{2} \cdot \sin \frac{{nx}}{2} \cr} $$
59.
If $${\left( {1 + x} \right)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ..... + {C_{15}}{x^{15}}$$ then $${C_2} + 2{C_3} + 3{C_4} + ..... + 14{C_{15}}$$ is equal to
A
$$14 \cdot {2^{14}}$$
B
$${13 \cdot 2^{14}} + 1$$
C
$${13 \cdot 2^{14}} - 1$$
D
None of these
Answer :
$${13 \cdot 2^{14}} + 1$$
View Solution
The general term $${T_r} = \left( {r - 1} \right){\,^{15}}{C_r},r = 2,3,4,.....,15$$
$$\eqalign{
& \therefore {T_r} = r{\,^{15}}{C_r} - {\,^{15}}{C_r} \cr
& = 15 \cdot {\,^{14}}{C_{r - 1}} - {\,^{15}}{C_r}\left[ {\because r \cdot {\,^n}{C_r} = n \cdot {\,^{n - 1}}{C_{r - 1}}} \right] \cr
& \therefore \sum\limits_{r = 2}^{15} {{T_r} = 15\left[ {^{14}{C_1} + {\,^{14}}{C_2} + ..... + {\,^{14}}{C_{14}}} \right]} - \left[ {^{15}{C_2} + {\,^{15}}{C_3} + ..... + {\,^{15}}{C_{15}}} \right] \cr
& = 15\left[ {{2^{14}} - 1} \right] - \left[ {{2^{15}} - 1 - 15} \right] \cr
& = \left( {15 - 2} \right){2^{14}} + 1 = 13 \cdot {2^{14}} + 1 \cr} $$
60.
The co-efficient of $${x^{20}}$$ in the expansion of $${\left( {1 + {x^2}} \right)^{40}} \cdot {\left( {{x^2} + 2 + \frac{1}{{{x^2}}}} \right)^{ - 5}}$$ is
A
$$^{30}{C_{10}}$$
B
$$^{30}{C_{25}}$$
C
$$1$$
D
None of these
Answer :
$$^{30}{C_{25}}$$
View Solution
Expression $$ = {\left( {1 + {x^2}} \right)^{40}} \cdot {\left( {x + \frac{1}{x}} \right)^{ - 10}} = {\left( {1 + {x^2}} \right)^{30}} \cdot {x^{10}}.$$
The co-efficient of $$x^{20}$$ in $${x^{10}}{\left( {1 + {x^2}} \right)^{30}}$$
= the co-efficient of $$x^{10}$$ in $${\left( {1 + {x^2}} \right)^{30}}$$
$$ = {\,^{30}}{C_5} = {\,^{30}}{C_{30 - 5}}.$$