Binomial Theorem MCQ Questions & Answers in Algebra | Maths

Learn Binomial Theorem MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

51. The expression $$\frac{1}{{\sqrt {3x + 1} }}\left[ {{{\left( {\frac{{1 + \sqrt {3x + 1} }}{2}} \right)}^7} - {{\left( {\frac{{1 - \sqrt {3x + 1} }}{2}} \right)}^7}} \right]$$          is a polynomial in $$x$$ of degree equal to

A 3
B 4
C 2
D 5
Answer :   3

52. If the third term in the expansion of $${\left[ {x + {x^{{{\log }_{10}}x}}} \right]^5}$$   is $$10^6,\,$$ then $$x$$ may be

A $$1$$
B $$\sqrt {10} $$
C $$10$$
D $${10^{ - \frac{2}{5}}}$$
Answer :   $$10$$

53. If number of terms in the expansion of $${\left( {x - 2y + 3z} \right)^n}$$   is 45, then $$n =$$

A $$7$$
B $$8$$
C $$9$$
D $$6^{10}$$
Answer :   $$8$$

54. The value of $$\left( {^7{C_0} + {\,^7}{C_1}} \right) + \left( {^7{C_1} + {\,^7}{C_2}} \right) + ..... + \left( {^7{C_6} + {\,^7}{C_7}} \right){\text{is}}$$

A $${2^8} - 2$$
B $${2^8} - 1$$
C $${2^8} + 1$$
D $${2^8} $$
Answer :   $${2^8} - 2$$

55. The sum of the series $$^{20}{C_0} - {\,^{20}}{C_1} + {\,^{20}}{C_2} - {\,^{20}}{C_3} + ..... - ..... + {\,^{20}}{C_{10}}{\text{ is}}$$

A $$0$$
B $$ {^{20}}{C_{10}}$$
C $$ - {\,^{20}}{C_{10}}$$
D $$\frac{1}{2}{\,^{20}}{C_{10}}$$
Answer :   $$\frac{1}{2}{\,^{20}}{C_{10}}$$

56. The co-efficient of $$x^6$$ in $$\left\{ {{{\left( {1 + x} \right)}^6} + {{\left( {1 + x} \right)}^7} + ..... + {{\left( {1 + x} \right)}^{15}}} \right\}$$        is

A $$^{16}{C_9}$$
B $$^{16}{C_5} - {\,^6}{C_5}$$
C $$^{16}{C_6} - 1$$
D None of these
Answer :   $$^{16}{C_9}$$

57. If the ratio of the $$7^{th}$$ term from the beginning to the $$7^{th}$$ term from the end in $${\left( {\root 3 \of 2 + \frac{1}{{\root 3 \of 3 }}} \right)^n}$$   is $$\frac{1}{6}$$ them $$n$$ equals to

A 10
B 9
C 8
D 12
Answer :   9

58. The value of $$\sum\limits_{r = 0}^n {^n{C_r}\sin \left( {rx} \right)} $$    is equal to

A $${2^n} \cdot {\cos ^n}\frac{x}{2} \cdot \sin \frac{{nx}}{2}$$
B $${2^n} \cdot {\sin ^n}\frac{x}{2} \cdot \cos \frac{{nx}}{2}$$
C $${2^{n + 1}} \cdot {\cos ^n}\frac{x}{2} \cdot \sin \frac{{nx}}{2}$$
D $${2^{n + 1}} \cdot {\sin ^n}\frac{x}{2} \cdot \cos \frac{{nx}}{2}$$
Answer :   $${2^n} \cdot {\cos ^n}\frac{x}{2} \cdot \sin \frac{{nx}}{2}$$

59. If $${\left( {1 + x} \right)^{15}} = {C_0} + {C_1}x + {C_2}{x^2} + ..... + {C_{15}}{x^{15}}$$         then $${C_2} + 2{C_3} + 3{C_4} + ..... + 14{C_{15}}$$       is equal to

A $$14 \cdot {2^{14}}$$
B $${13 \cdot 2^{14}} + 1$$
C $${13 \cdot 2^{14}} - 1$$
D None of these
Answer :   $${13 \cdot 2^{14}} + 1$$

60. The co-efficient of $${x^{20}}$$ in the expansion of $${\left( {1 + {x^2}} \right)^{40}} \cdot {\left( {{x^2} + 2 + \frac{1}{{{x^2}}}} \right)^{ - 5}}$$     is

A $$^{30}{C_{10}}$$
B $$^{30}{C_{25}}$$
C $$1$$
D None of these
Answer :   $$^{30}{C_{25}}$$