Binomial Theorem MCQ Questions & Answers in Algebra | Maths

Learn Binomial Theorem MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

61. If the co-efficient of $${x^7}$$ in $${\left[ {a{x^2} + \left( {\frac{1}{{bx}}} \right)} \right]^{11}}$$   equals the co-efficient of $${x^{ - 7}}$$ in $${\left[ {ax - \left( {\frac{1}{{b{x^2}}}} \right)} \right]^{11}},$$    then $$a$$ and $$b$$ satisfy the relation

A $$a - b = 1$$
B $$a + b = 1$$
C $$\frac{a}{b} = 1$$
D $$ab = 1$$
Answer :   $$ab = 1$$

62. If the $$7^{th}$$ term in the binomial expansion of $${\left( {\frac{3}{{\root 3 \of {84} }} + \sqrt 3 \ln x} \right)^9},x > 0,$$      is equal to 729, then $$x$$ can be

A $$e^2$$
B $$e$$
C $$\frac{e}{2}$$
D $$2e$$
Answer :   $$e$$

63. For $$r = 0,1, . . . . . , 10,$$    let $${A_r},{B_r}\,{\text{and }}{C_r}$$   denote, respectively, the co - efficient of $${x^r}$$ in the expansions of $${\left( {1 + x} \right)^{10}},{\left( {1 + x} \right)^{20}}\,{\text{and }}{\left( {1 + x} \right)^{30}}.$$       Then $$\sum\limits_{r = 1}^{10} {{A_r}\left( {{B_{10}}{B_r} - {C_{10}}{A_r}} \right)} $$     is equal to

A $${B_{10}} - {C_{10}}$$
B $${A_{10}}\left( {{B^2}_{10}{C_{10}}{A_{10}}} \right)$$
C 0
D $${C_{10}} - {B_{10}}$$
Answer :   $${C_{10}} - {B_{10}}$$

64. The value of \[\left( {\begin{array}{*{20}{c}} {30}\\ 0 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {30}\\ {10} \end{array}} \right) - \left( {\begin{array}{*{20}{c}} {30}\\ 1 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {30}\\ {11} \end{array}} \right) + \left( {\begin{array}{*{20}{c}} {30}\\ 2 \end{array}} \right)\left( {\begin{array}{*{20}{c}} {30}\\ {12} \end{array}} \right)..... + \left( {\begin{array}{*{20}{c}} {30}\\ {20} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {30}\\ {30} \end{array}} \right)\]             is where \[\left( {\begin{array}{*{20}{c}} n\\ r \end{array}} \right) = {\,^n}{C_r}\]

A \[\left( {\begin{array}{*{20}{c}} {30}\\ {10} \end{array}} \right)\]
B \[\left( {\begin{array}{*{20}{c}} {30}\\ {15} \end{array}} \right)\]
C \[\left( {\begin{array}{*{20}{c}} {60}\\ {30} \end{array}} \right)\]
D \[\left( {\begin{array}{*{20}{c}} {31}\\ {10} \end{array}} \right)\]
Answer :   \[\left( {\begin{array}{*{20}{c}} {30}\\ {10} \end{array}} \right)\]

65. The sum of the series $$\frac{2}{1} \cdot \frac{1}{3} + \frac{3}{2} \cdot \frac{1}{9} + \frac{4}{3} \cdot \frac{1}{{27}} + \frac{5}{4} \cdot \frac{1}{{81}} + .....\infty $$         is equal to

A $${\log _e}3 - {\log _e}2$$
B $$\frac{1}{2} + {\log _e}3 - {\log _e}2$$
C $$\frac{1}{2} + {\log _e}3 + {\log _e}2$$
D $${\log _e}3 + {\log _e}2$$
Answer :   $$\frac{1}{2} + {\log _e}3 - {\log _e}2$$

66. Let $$f\left( n \right) = {10^n} + 3 \cdot {4^{n + 2}} + 5,n \in N.$$      The greatest value of the integer which divides $$f\left( n \right)$$  for all $$n$$ is

A 27
B 9
C 3
D None of these
Answer :   9

67. If the sum of the coefficients in the expansion of $${\left( {1 - 3x + 10{x^2}} \right)^n}\,$$   is $$a$$ and if the sum of the coefficients in the expansion of $${\left( {1 + {x^2}} \right)^n}$$  is $$b,$$ then

A $$a = 3b$$
B $$a = b^3$$
C $$b = a^3$$
D None of these
Answer :   $$a = b^3$$

68. If in the expansion of $${\left( {1 + x} \right)^m}{\left( {1 - x} \right)^n},$$    the co-efficients of $$x$$ and $${x^2}$$ are $$3$$ and $$- 6\,$$ respectively, then $$m$$ is

A 6
B 9
C 12
D 24
Answer :   12

69. The co-efficient of $${x^4}$$ in $${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$$   is

A $$\frac{{405}}{{256}}$$
B $$\frac{{504}}{{259}}$$
C $$\frac{{450}}{{263}}$$
D none of these
Answer :   $$\frac{{405}}{{256}}$$

70. The value of $$\left( {^{10}{C_0}} \right) + \left( {^{10}{C_0} + {\,^{10}}{C_1}} \right) + \left( {^{10}{C_0} + {\,^{10}}{C_1} + {\,^{10}}{C_2}} \right) + ..... + \left( {^{10}{C_0} + {\,^{10}}{C_1} + {\,^{10}}{C_2} + ..... + {\,^{10}}{C_9}} \right){\text{is}}$$

A $${2^{10}}$$
B $$10 \cdot {2^9}$$
C $$10 \cdot {2^{10}}$$
D None of these
Answer :   $$10 \cdot {2^9}$$