Binomial Theorem MCQ Questions & Answers in Algebra | Maths

Learn Binomial Theorem MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

81. If the sum of the co-efficients in the expansion of $${\left( {a + b} \right)^n}$$  is 4096, then the greatest co-eficient in the expansion is

A 1594
B 792
C 924
D 2924
Answer :   924

82. Let $$n \in N$$  and $$n < {\left( {\sqrt 2 + 1} \right)^6}.$$   Then the greatest value of $$n$$ is

A 199
B 198
C 197
D 196
Answer :   197

83. $$\frac{1}{{1!\, \cdot \left( {n - 1} \right)!}} + \frac{1}{{3!\, \cdot \left( {n - 3} \right)!}} + \frac{1}{{5!\, \cdot \left( {n - 5} \right)!}} + .....$$          is equal to

A $$\frac{{{2^{n - 1}}}}{{n!}}$$  for even values of $$n$$ only
B $$\frac{{{2^{n - 1}} + 1}}{{n!}} - 1$$   for odd values of $$n$$ only
C $$\frac{{{2^{n - 1}}}}{{n!}}$$  for all $$n \in N$$
D None of these
Answer :   $$\frac{{{2^{n - 1}}}}{{n!}}$$  for all $$n \in N$$

84. If $$\frac{{{e^x}}}{{1 - x}} = {B_0} + {B_1}x + {B_2}{x^2} + ..... + {B_n}{x^n}\,$$        then $${B_n} - {B_{n - 1}}{\text{ is}}$$

A $$\frac{1}{{n!}} - \frac{1}{{\left( {n - 1} \right)!}}$$
B $$\frac{1}{{n!}}$$
C $$\frac{1}{{\left( {n - 1} \right)!}}$$
D $$\frac{1}{{n!}} + \frac{1}{{\left( {n - 1} \right)!}}$$
Answer :   $$\frac{1}{{n!}}$$

85. The term independent of $$x$$ in the expansion of $${\left( {1 - x} \right)^2} \cdot {\left( {x + \frac{1}{x}} \right)^{10}}$$    is

A $$^{11}{C_5}$$
B $$^{10}{C_5}$$
C $$^{10}{C_4}$$
D None of these
Answer :   $$^{11}{C_5}$$

86. The number of rational terms in the expansion of $${\left( {1 + \sqrt 2 + \root 3 \of 3 } \right)^6}$$   is

A 6
B 7
C 5
D 8
Answer :   7

87. If $$\left\{ x \right\}$$ denotes the fractional part of $$x$$ then $$\left\{ {\frac{{{3^{2n}}}}{8}} \right\},n \in N,$$    is

A $$\frac{3}{8}$$
B $$\frac{7}{8}$$
C $$\frac{1}{8}$$
D None of these
Answer :   $$\frac{1}{8}$$

88. The sum of co-efficients of integral power of $$x$$ in the binomial expansion $${\left( {1 - 2\sqrt x } \right)^{50}}$$   is:

A $$\frac{1}{2}\left( {{3^{50}} - 1} \right)$$
B $$\frac{1}{2}\left( {{2^{50}} + 1} \right)$$
C $$\frac{1}{2}\left( {{3^{50}} + 1} \right)$$
D $$\frac{1}{2}\left( {{3^{50}}} \right)$$
Answer :   $$\frac{1}{2}\left( {{3^{50}} + 1} \right)$$

89. The sum of the rational terms in the expansion of $${\left( {\sqrt 2 + \root 5 \of 3 } \right)^{10}}$$   is

A 32
B 9
C 41
D None of these
Answer :   41

90. If the fourth term in the expansion of $${\left( {\sqrt {{x^{\left( {\frac{1}{{\log x + 1}}} \right)}}} + {x^{\frac{1}{{12}}}} } \right)^6}$$     is equal to 200 and $$x > 1,$$  then $$x$$ is equal to $$\left( {\log = {{\log }_{10}}} \right)$$

A $${10^{\sqrt 2 }}$$
B $$10$$
C $$10^4$$
D None of these
Answer :   $$10$$