Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

91. If $$\frac{{w - \overline w z}}{{1 - z}}$$   is purely real where $$w = \alpha + i\beta ,\beta \ne 0\,{\mkern 1mu} {\mkern 1mu} {\text{and}}\,\,z \ne 1,$$      then the set of the values of $$z$$ is

A $$\left\{ {z:\left| z \right| = 1} \right\}$$
B $$\left\{ {z:z = \bar z} \right\}$$
C $$\left\{ {z:z \ne 1} \right\}$$
D $$\left\{ {z:\left| z \right| = 1,z \ne 1} \right\}$$
Answer :   $$\left\{ {z:\left| z \right| = 1,z \ne 1} \right\}$$

92. If $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^x} = 1\,\,{\text{then}}$$

A $$x = 2n + 1 ,$$   where $$n$$ is any positive integer
B $$x = 4n ,$$  where $$n$$ is any positive integer
C $$x = 2n ,$$  where $$n$$ is any positive integer
D $$x = 4n + 1,$$   where $$n$$ is any positive integer
Answer :   $$x = 4n ,$$  where $$n$$ is any positive integer

93. If $$\omega = \frac{z}{{z - \frac{1}{3}i}}$$   and $$\left| \omega \right| = 1,$$  then $$z$$ lies on

A an ellipse
B a circle
C a straight line
D a parabola
Answer :   a straight line

94. For all complex numbers $${z_1},{z_2}$$  satisfying $$\left| {{z_1}} \right| = 12\,\,{\text{and }}\left| {{z_2} - 3 - 4i} \right| = 5,$$       the minimum value of $$\left| {{z_1} - {z_2}} \right|$$  is

A 0
B 2
C 7
D 17
Answer :   2

95. The value of $${\alpha ^{4n - 1}} + {\alpha ^{4n - 2}} + {\alpha ^{4n - 3}},n \in N$$      and $$\alpha $$ is a non-real fourth root of unity, is

A $$0$$
B $$- 1$$
C $$3$$
D None of these
Answer :   $$- 1$$

96. The inequality $$\left| {z - 4} \right|{\text{ < }}\left| {z - 2} \right|$$    represents the region given by

A $${\text{Re}}\left( z \right) \geqslant 0$$
B $${\text{Re}}\left( z \right) < 0$$
C $${\text{Re}}\left( z \right) > 0$$
D none of these
Answer :   none of these

97. The angle that the vector representing the complex number $$\frac{1}{{{{\left( {\sqrt {3} - i } \right)}^{25}}}}$$   makes with the positive direction of the real axis is

A $$\frac{{2\pi }}{3}$$
B $$ - \frac{\pi }{6}$$
C $$\frac{{5\pi }}{6}$$
D $$\frac{\pi }{6}$$
Answer :   $$\frac{\pi }{6}$$

98. If $${z_1},{z_2}\,{\text{and }}{z_3}$$   are complex numbers such that $$\left| {{z_1}} \right| = \left| {{z_2}} \right|\, = \left| {{z_3}} \right| = \left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1,$$        then $$\left| {{z_1} + {z_2} + {z_3}} \right|$$   is

A equal to 1
B less than 1
C greater than 3
D equal to 3
Answer :   equal to 1

99. The set of values of $$a \in R$$   for which $${x^2} + i\left( {a - 1} \right)x + 5 = 0$$     will have a pair of conjugate complex roots is

A $$R$$
B $$\left\{ 1 \right\}$$
C $$\left\{ {a\left| {{a^2} - 2a + 21 > 0} \right.} \right\}$$
D None of these
Answer :   $$\left\{ 1 \right\}$$

100. The solution of $$2\sqrt 2 \,{x^4} = \left( {\sqrt 3 - 1} \right) + i\left( {\sqrt 3 + 1} \right)$$       is

A $$ \pm \left( {\cos \frac{{5\pi }}{{48}} + i\sin \frac{{5\pi }}{{48}}} \right)$$
B $$ \pm \left( {\cos \frac{{7\pi }}{{48}} + i\sin \frac{{7\pi }}{{48}}} \right)$$
C $$ \pm \left( {\cos \frac{{19\pi }}{{48}} - i\sin \frac{{19\pi }}{{48}}} \right)$$
D None of these
Answer :   $$ \pm \left( {\cos \frac{{5\pi }}{{48}} + i\sin \frac{{5\pi }}{{48}}} \right)$$