Rationalizing the given expression
$$\frac{{\left( {2 + 3i\sin \theta } \right)\left( {1 + 2i\sin \theta } \right)}}{{1 + 4{{\sin }^2}\theta }}$$
For the given expression to be purely imaginary, real part of the above expression should be equal to zero.
$$\eqalign{
& \Rightarrow \,\,\frac{{2 - 6{{\sin }^2}\theta }}{{1 + 4{{\sin }^2}\theta }} = 0 \cr
& \Rightarrow \,\,{\sin ^2}\theta = \frac{1}{3} \cr
& \Rightarrow \,\,\sin \theta = \pm \frac{1}{{\sqrt 3 }} \cr} $$
113.
Let $$\alpha ,\beta $$ be real and $$z$$ be a complex number. If $${z^2} + \alpha z + \beta = 0$$ has two distinct roots on the line $${\text{Re }} z = 1,$$ then it is necessary that :
A
$$\beta \in \left( { - 1,0} \right)$$
B
$$\left| \beta \right| = 1$$
C
$$\beta \in \left( {1,\infty } \right)$$
D
$$\beta \in \left( {0,1} \right)$$
Answer :
$$\beta \in \left( {1,\infty } \right)$$
$$\because $$ Real part of roots is 1
Let roots are $$1 + pi , 1 + q$$
∴ sum of roots $$ = 1 + pi + 1 + qi = - \alpha $$ which is real
⇒ $$q = - p$$ or root are
$$1 + pi$$ and $$1 - pi$$ product of roots $$ = 1 + {p^2} = \beta \in \left( {1,\infty } \right)$$
$$p \ne 0$$ as roots are distinct.
114.
If $${z_1} \ne - {z_2}$$ and $$\left| {{z_1} + {z_2}} \right| = \left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}}} \right|$$ then
117.
If $$n$$ is a positive integer grater than unity and $$z$$ is a complex satisfying the equation $${z^n} = {\left( {z + 1} \right)^n},$$ then
A
$$\operatorname{Re} \left( z \right) < 2$$
B
$$\operatorname{Re} \left( z \right) > 0$$
C
$$\operatorname{Re} \left( z \right) = 0$$
D
$$z$$ lies on $$x = - \frac{1}{2}$$
Answer :
$$z$$ lies on $$x = - \frac{1}{2}$$
$$\eqalign{
& {z^n} = {\left( {z + 1} \right)^n} \cr
& \Rightarrow \,{\left| z \right|^n} = {\left| {z + 1} \right|^n}\,\,{\text{or}}\,\,\,\left| z \right| = \left| {z + 1} \right|. \cr} $$
So the distance of point $$z$$ remain same from $$\left( {0,0} \right)$$ and $$\left( {- 1,0} \right).$$
So, $$z$$ lies on perpendicular bisector of line joining $$\left( {0,0} \right)$$ and $$\left( {-1,0} \right)$$ that is on $$x = - \frac{1}{2}$$
118.
Let $$\lambda \in R.$$ If the origin and the non-real roots of $$2{z^2} + 2z + \lambda = 0$$ form the three vertices of an equilateral triangle in the Argand plane then $$\lambda $$ is