Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

131. If $$z$$ be a complex number satisfying $${z^4} + {z^3} + 2{z^2} + z + 1 = 0$$      then $$\left| z \right|$$ is equal to

A $$\frac{1}{2}$$
B $$\frac{3}{4}$$
C $$1$$
D None of these
Answer :   $$1$$

132. If $$z$$ in any complex number satisfying $$\left| {z - 1} \right| = 1,$$   then which of the following is correct ?

A $$arg\left( {z - 1} \right) = 2\arg z$$
B $$2arg\left( z \right) = \frac{2}{3}\arg \left( {{z^2} - z} \right)$$
C $$arg\left( {z - 1} \right) = \arg \left( {z + 1} \right)$$
D $$\arg z = 2\arg \left( {z + 1} \right)$$
Answer :   $$arg\left( {z - 1} \right) = 2\arg z$$

133. If $$\left| {z - 4} \right| < \left| {z - 2} \right|,$$    its solution is given by

A Re$$(z)$$ > 0
B Re$$(z)$$ < 0
C Re$$(z)$$ > 3
D Re$$(z)$$ > 2
Answer :   Re$$(z)$$ > 3

134. If $$1 + {x^2} = \sqrt {3x} $$    then$$\sum\limits_{n = 1}^{24} {{{\left( {{x^n} - \frac{1}{{{x^n}}}} \right)}^2}} $$    is equal to

A $$48$$
B $$- 48$$
C $$ \pm 48\left( {\omega - {\omega ^2}} \right)$$
D None of these
Answer :   None of these

135. The locus of the center of a circle which touches the circle $$\left| {z - {z_1}} \right| = a\,\,{\text{and }}\left| {z - {z_2}} \right| = b$$      externally $$\left( {z,{z_1}\& {z_2}\,{\text{are complex numbers}}} \right)$$      will be

A an ellipse
B a hyperbola
C a circle
D none of these
Answer :   a hyperbola

136. A man walks a distance of 3 units from the origin towards the north-east $$\left( {N{{45}^ \circ }E} \right)$$   direction. From there, he walks a distance of 4 units towards the north-west $$\left( {N{{45}^ \circ }W} \right)$$   direction to reach a point $$P.$$ Then the position of $$P$$ in the Argand plane is

A $$3{e^{i\frac{\pi }{4}}} + 4i$$
B $$\left( {3 - 4i} \right){e^{i\frac{\pi }{4}}}$$
C $$\left( {4 + 3i} \right){e^{i\frac{\pi }{4}}}$$
D $$\left( {3 + 4i} \right){e^{i\frac{\pi }{4}}}$$
Answer :   $$\left( {3 + 4i} \right){e^{i\frac{\pi }{4}}}$$

137. Non-real complex numbers $$z$$ satisfying the equation $${z^3} + 2{z^2} + 3z + 2 = 0$$     are

A $$\frac{{ - 1 \pm \sqrt { - 7} }}{2}$$
B $$\frac{{1 + \sqrt {7}i }}{2},\frac{{1 - \sqrt {7}i }}{2}$$
C $$ - i,\frac{{ - 1 + \sqrt {7}i }}{2},\frac{{ - 1 - \sqrt {7}i }}{2}$$
D None of these
Answer :   $$\frac{{ - 1 \pm \sqrt { - 7} }}{2}$$

138. The value of $$\sum\limits_{k = 1}^{10} {\left( {\sin \frac{{2k\pi }}{{11}} + i\cos \frac{{2k\pi }}{{11}}} \right)} $$     is

A $$i$$
B $$1$$
C $$ - 1$$
D $$ - i$$
Answer :   $$ - i$$

139. If $$z = x + iy,{z^{\frac{1}{3}}} = a - ib,$$     then $$\frac{x}{a} - \frac{y}{b} = k\left( {{a^2} - {b^2}} \right)$$    where $$k$$ is equal to

A 1
B 2
C 3
D 4
Answer :   4

140. If $${\log _{\frac{1}{2}}}\frac{{{{\left| z \right|}^2} + 2\left| z \right| + 4}}{{2{{\left| z \right|}^2} + 1}} < 0$$     then the region traced by $$z$$ is

A $$\left| z \right| < 3$$
B $$1 < \left| z \right| < 3$$
C $$\left| z \right| > 1$$
D $$\left| z \right| < 2$$
Answer :   $$\left| z \right| < 3$$