135.
The locus of the center of a circle which touches the circle $$\left| {z - {z_1}} \right| = a\,\,{\text{and }}\left| {z - {z_2}} \right| = b$$ externally $$\left( {z,{z_1}\& {z_2}\,{\text{are complex numbers}}} \right)$$ will be
A
an ellipse
B
a hyperbola
C
a circle
D
none of these
Answer :
a hyperbola
Let the circle be $$\left| {z - {z_0}} \right| = r.$$ Then according to given conditions $$\left| {{z_0} - {z_1}} \right| = r + a\,\,{\text{and }}\left| {{z_0} - {z_2}} \right| = r + b.$$ Eliminating $$r,$$ we get $$\left| {{z_0} - {z_1}} \right| - \left| {{z_0} - {z_2}} \right| = a - b.$$
∴ Locus of center $${{z_0}}$$ is $$\left| {{z} - {z_1}} \right| - \left| {{z} - {z_2}} \right| = a - b,$$ which represents a hyperbola
136.
A man walks a distance of 3 units from the origin towards the north-east $$\left( {N{{45}^ \circ }E} \right)$$ direction. From there, he walks a distance of 4 units towards the north-west $$\left( {N{{45}^ \circ }W} \right)$$ direction to reach a point $$P.$$ Then the position of $$P$$ in the Argand plane is
A
$$3{e^{i\frac{\pi }{4}}} + 4i$$
B
$$\left( {3 - 4i} \right){e^{i\frac{\pi }{4}}}$$
C
$$\left( {4 + 3i} \right){e^{i\frac{\pi }{4}}}$$
D
$$\left( {3 + 4i} \right){e^{i\frac{\pi }{4}}}$$
140.
If $${\log _{\frac{1}{2}}}\frac{{{{\left| z \right|}^2} + 2\left| z \right| + 4}}{{2{{\left| z \right|}^2} + 1}} < 0$$ then the region traced by $$z$$ is
A
$$\left| z \right| < 3$$
B
$$1 < \left| z \right| < 3$$
C
$$\left| z \right| > 1$$
D
$$\left| z \right| < 2$$
Answer :
$$\left| z \right| < 3$$
$$\eqalign{
& {\log _{\frac{1}{2}}}\frac{{{{\left| z \right|}^2} + 2\left| z \right| + 4}}{{2{{\left| z \right|}^2} + 1}} < 0 = {\log _{\frac{1}{2}}}1 \cr
& \Rightarrow \,\,\frac{{{{\left| z \right|}^2} + 2\left| z \right| + 4}}{{2{{\left| z \right|}^2} + 1}} > 1 \cr
& {\text{or, }}{\left| z \right|^2} + 2\left| z \right| + 4 > 2{\left| z \right|^2} + 1 \cr
& {\text{or, }}{\left| z \right|^2} - 2\left| z \right| - 3 < 0 \cr
& {\text{or, }}\left( {\left| z \right| + 1} \right)\left( {\left| z \right| - 3} \right) < 0 \cr
& \therefore \,\,\left| z \right| - 3 < 0. \cr} $$