Complex Number MCQ Questions & Answers in Algebra | Maths
Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
11.
Let $$\lambda \in {\bf{R}}.$$ If the origin and the non real roots of $$2z^2 + 2z + \lambda = 0$$ form the three vertices of an equilateral triangle in the argand plane. Then $$\lambda$$ is
A
$$1$$
B
$$\frac{2}{3}$$
C
$$2$$
D
$$- 1$$
Answer :
$$\frac{2}{3}$$
For the non-real roots of the equation $$2{z^2} + 2z + \lambda = 0\,\,\,\,\,.....\left( {\text{i}} \right)$$
$$\eqalign{
& {\text{discriminant}} < 0. \cr
& {\text{That}}\,{\text{is}}\,\,4 - 8\lambda < 0 \cr
& \Rightarrow \,\lambda > \frac{1}{2}\,\,\,\,\,.....\left( {{\text{ii}}} \right) \cr} $$
Let the roots of (i) be $${z_1}\,\,\& \,\,{z_2}$$
$${\text{Then}}\,\,{z_1} + {z_2} = - \frac{2}{2} = - 1,\,{z_1}{z_2} = \frac{\lambda }{2}$$
$$\eqalign{
& {z^2} + z_2^2 - {z_1}{z_2} = 0 \cr
& \Rightarrow \,{\left( {{z_1} + {z_2}} \right)^2} = 3{z_1}{z_2} \cr
& \Rightarrow \,{\left( { - 1} \right)^2} = 3\frac{\lambda }{2} \cr
& \Rightarrow \,\lambda = \frac{2}{3} \cr} $$
$$\lambda = \frac{2}{3}\left( { > \frac{1}{2}} \right)$$ satisfies the condition (ii).
Hence, it is the required result.
12.
If $$z_1 , z_2$$ and $$z_3$$ are complex numbers such that $$\left| {{z_1}} \right| = \left| {{z_2}} \right| = \left| {{z_3}} \right| = \left| {\frac{1}{{{z_1}}} + \frac{1}{{{z_2}}} + \frac{1}{{{z_3}}}} \right| = 1,$$ then $$\left| {{z_1} + {z_2} + {z_3}} \right|$$ is
13.
$$z_1$$ and $$z_2$$ are the roots of $${3z^2} +3z + b = 0.$$ If $$O\left( 0 \right),A\left( {{z_1}} \right),B\left( {{z_2}} \right)$$ form an equilateral triangle, then the value of $$b$$ is
14.
The points $$z_1, z_2 , z_3, z_4$$ in a complex plane are vertices of a parallelogram taken in order, then
A
$${z_1} + {z_4} = {z_2} + {z_3}$$
B
$${z_1} + {z_3} = {z_2} + {z_4}$$
C
$${z_1} + {z_2} = {z_3} + {z_4}$$
D
None of these
Answer :
$${z_1} + {z_3} = {z_2} + {z_4}$$
Let $$z_1 , z_2 , z_3$$ and $$z_4$$ the points in complex plane be the vertices of a parallelogram taken in order.
Since, the diagonals of a parallelogram bisect,
hence, the mid points of $$AC$$ and $$BD$$ must coincide
i.e.,
$$\eqalign{
& \frac{{{z_1} + {z_3}}}{2} = \frac{{{z_2} + {z_4}}}{2} \cr
& \Rightarrow {z_1} + {z_3} = {z_2} + {z_4} \cr} $$
15.
If $$z$$ is a complex number such that $$\left| z \right| \geqslant 2,$$ then the minimum value of $$\left| {z + \frac{1}{2}} \right|:$$
A
is strictly greater than $$\frac{5}{2}$$
B
is strictly greater than $$\frac{3}{2}$$ but less than $$\frac{5}{2}$$
C
is equal to $$\frac{5}{2}$$
D
lie in the interval $$(1, 2)$$
Answer :
is strictly greater than $$\frac{3}{2}$$ but less than $$\frac{5}{2}$$
We know minimum value of $$\left| {{Z_1} + {Z_2}} \right|{\text{ is }}\left| {\left| {{Z_1}} \right| - \left| {{Z_2}} \right|} \right|$$
Thus minimum value of $$\left| {Z + \frac{1}{2}} \right|{\text{ is }}\left| {\left| Z \right| - \frac{1}{2}} \right| \leqslant \left| {Z + \frac{1}{2}} \right| \leqslant \left| Z \right| + \frac{1}{2}$$
$$\eqalign{
& {\text{Since, }}\left| Z \right| \geqslant 2{\text{ therefore 2}} - \frac{1}{2} < \left| {Z + \frac{1}{2}} \right| < 2 + \frac{1}{2} \cr
& \Rightarrow \,\,\frac{3}{2} < \left| {Z + \frac{1}{2}} \right| < \frac{5}{2} \cr} $$
16.
If $$2{z_1} - 3{z_2} + {z_3} = 0$$ then $${z_1},{z_2},{z_3}$$ are represented by
A
three vertices of a triangle
B
three collinear points
C
three vertices of a rhombus
D
None of these
Answer :
three collinear points
$${z_2} = \frac{{2{z_1} + {z_3}}}{{2 + 1}}$$
$$ \Rightarrow {z_2}$$ divides the line segment joining $${z_1},{z_3}$$ in the ratio $$2 : 1$$ internally. Note : If $${z_1},{z_2},{z_3}$$ are related by $$a{z_1} + b{z_2} + c{z_3} = 0,$$ where $$a + b \pm c = 0,$$ then $${z_1},{z_2},{z_3}$$ will be collinear points. ALTERNATE SOLUTION
$$\eqalign{
& {\text{Given, }}2{z_1} + {z_3} = 3{z_2} \cr
& {z_2} = \frac{{2{z_1} + {z_3}}}{{2 + 1}} \cr} $$
So, $${z_2}$$ divided the line joining the point $${z_1},\,{z_3}$$ are in the ratio $$1 : 2$$
So, $${z_1},{z_2},{z_3}$$ are collinear.
17.
If the cube roots of unity are $$1,\omega ,{\omega ^2}$$ then the roots of the equation $${\left( {x - 1} \right)^3} + 8 = 0,$$ are
18.
If the point $${z_1} = 1 + i$$ where $$i = \sqrt { - 1} $$ is the reflection of a point $${z_2} = x + iy$$ in the line $$i\bar z - i\bar z = 5,$$ then the point $$z_2$$ is
A
$$1 + 4i$$
B
$$4 + i$$
C
$$1 - i$$
D
$$- 1 - i$$
Answer :
$$1 + 4i$$
Let $$z = a + bi$$
$$\eqalign{
& \Rightarrow \bar z = a - bi \cr
& \therefore i\bar z - iz = i\left[ {\left( {a - bi} \right) - \left( {a + bi} \right)} \right] = 5 \cr
& \Rightarrow i\left[ { - 2bi} \right] = 5 \cr
& \Rightarrow b = \frac{5}{2} \cr} $$
So from figure it is clear that
$$\eqalign{
& x = 1,y = \frac{5}{2} + \frac{3}{2} = 4 \cr
& {z_2} = 1 + 4i \cr} $$
19.
If $$z$$ is a nonreal root of $$\root 7 \of { - 1} $$ then $${z^{86}} + {z^{175}} + {z^{289}}$$ is equal to