Complex Number MCQ Questions & Answers in Algebra | Maths
Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
21.
Let $$R$$ be the real line. Consider the following subsets of the plane $$R \times R:$$
$$\eqalign{
& S = \left\{ {\left( {x,y} \right):y = x + 1\,{\text{and }}0 < x < 2} \right\} \cr
& T = \left\{ {\left( {x,y} \right):x - y\,\,{\text{is an integer}}} \right\}, \cr} $$
Which one of the following is true?
A
Neither $$S$$ nor $$T$$ is an equivalence relation on $$R$$
B
Both $$S$$ and $$T$$ are equivalence relation on $$R$$
C
$$S$$ is an equivalence relation on $$R$$ but $$T$$ is not
D
$$T$$ is an equivalence relation on $$R$$ but $$S$$ is not
Answer :
$$T$$ is an equivalence relation on $$R$$ but $$S$$ is not
$$\eqalign{
& {\text{Given }}S = \left\{ {\left( {x,y} \right):y = x + 1\,{\text{and }}0 < x < 2} \right\} \cr
& \because \,\,x \ne x + 1\,\,{\text{for any }}x \in \left( {0,2} \right) \Rightarrow \left( {x,x} \right) \notin S \cr
& \therefore \,\,S\,\,{\text{is not reflexive}}{\text{.}} \cr} $$
Hence $$S$$ in not an equivalence relation.
$$\eqalign{
& {\text{Also }}T = \left\{ {\left( {x,y} \right):x - y\,\,{\text{is an integer}}} \right\} \cr
& \because \,\,x - x = 0\,\,{\text{is an integer }}\forall \,x \in R \cr
& \therefore \,\,T\,\,{\text{is reflexive}}{\text{.}} \cr} $$
If $$x - y$$ is an integer then $$y - x$$ is also an integer
∴ $$T$$ is symmetric.
If $$x - y$$ is an integer and $$y - z$$ is an integer then
$$(x - y) + (y - z) = x - z$$ is also an integer.
∴ $$T$$ is transitive
Hence $$T$$ is an equivalence relation.
22.
If $$\left| z \right| = 1\,{\text{and }}z \ne \pm 1,$$ then all the values of $$\frac{z}{{1 - {z^2}}}$$ lie on
A
a line not passing through the origin
B
$$\left| z \right| = \sqrt 2 $$
C
the $$x$$ - axis
D
the $$y$$ - axis
Answer :
the $$y$$ - axis
$${\text{Given }}\left| z \right| = 1\,{\text{and }}z \ne \pm 1$$
To find locus of $$\omega = \frac{z}{{1 - {z^2}}}$$
We have $$\omega = \frac{z}{{1 - {z^2}}} = \frac{z}{{z\overline z - {z^2}}}\,\,\,\,\,\,\,\,\left[ {\because \,\left| z \right| = 1\,\, \Rightarrow {{\left| z \right|}^2} = z\overline z = 1} \right]$$
$$\,\,\,\,\, = \frac{1}{{\overline z - z}}$$
= purely imaginary number
∴ $$\omega $$ must lie on $$y$$ - axis.
23.
The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$
A
$$n = 8$$
B
$$n = 16$$
C
$$n = 12$$
D
none of these
Answer :
none of these
$$\frac{{1 + i}}{{1 - i}} = \frac{{{{\left( {1 + i} \right)}^2}}}{{\left( {1 - i} \right)\left( {1 + i} \right)}} = \frac{{1 - 1 + 2i}}{2} = i$$
Now $${i^n} = 1$$
⇒ the smallest positive integral value of $$n$$ should be 4.
24.
Let $$x_1$$ and $$y_1$$ be real numbers. If $$z_1$$ and $$z_2$$ are complex numbers such that $$\left| {{z_1}} \right| = \left| {{z_2}} \right| = 4,$$ then $${\left| {{x_1}{z_1} - {y_1}{z_2}} \right|^2} + {\left| {{y_1}{z_1} + {x_1}{z_2}} \right|^2} =? $$
A
$$32\left( {{x_1}^2 + {y_1}^2} \right)$$
B
$$16\left( {{x_1}^2 + {y_1}^2} \right)$$
C
$$4\left( {{x_1}^2 + {y_1}^2} \right)$$
D
$$32\left( {{x_1}^2 + {y_1}^2} \right){\left| {{z_1} + {z_2}} \right|^2}$$
27.
A complex number $$z$$ is said to be unimodular if $$\left| z \right| = 1.$$ Suppose $${z_1}\,{\text{and }}{z_2}$$ are complex numbers such that $$\frac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}}$$ is unimodular and $${{z_2}}$$ is not unimodular. Then the point $${{z_2}}$$ lies on a:
29.
$$A + iB$$ form of $$\frac{{\left( {\cos x + i\sin x} \right)\left( {\cos y + i\sin y} \right)}}{{\left( {\cot u + i} \right)\left( {1 + i\tan v} \right)}}$$ is equal to :
A
$$\sin u\cos v\left[ {\cos \left( {x + y - u - v} \right) + i\sin \left( {x + y - u - v} \right)} \right]$$
B
$$\sin u\cos v\left[ {\cos \left( {x + y + u + v} \right) + i\sin \left( {x + y + u + v} \right)} \right]$$
C
$$\sin u\cos v\left[ {\cos \left( {x + y + u + v} \right) - i\sin \left( {x + y - u + v} \right)} \right]$$
D
None of these
Answer :
$$\sin u\cos v\left[ {\cos \left( {x + y - u - v} \right) + i\sin \left( {x + y - u - v} \right)} \right]$$
$$\eqalign{
& {\text{Given, }}\frac{{\left( {\cos x + i\sin x} \right)\left( {\cos y + i\sin y} \right)}}{{\left( {\cot u + i} \right)\left( {1 + i\tan v} \right)}} \cr
& = \frac{{\left( {\cos x + i\sin x} \right)\left( {\cos y + i\sin y} \right)}}{{\left( {\cos u + i\sin u} \right)\left( {\cos v + i\sin v} \right)}} \cr
& = \sin u\cos v\left[ {\cos \left( {x + y - u - v} \right) + i\sin \left( {x + y - u - v} \right)} \right] \cr} $$
30.
If $$z\left( {\overline {z + \alpha } } \right) + \overline z \left( {z + \alpha } \right) = 0,$$ where $$\alpha $$ is a complex constant, then $$z$$ is
represented by a point on
A
a straight line
B
a circle
C
a parabola
D
None of these
Answer :
a circle
$$z\left( {\overline z + \overline \alpha } \right) + \overline z z + \alpha \overline z = 0$$
or, $$z\overline z + \frac{{\overline \alpha }}{2}z + \frac{\alpha }{2}\overline z = 0$$ which is a circle.