Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

21. Let $$R$$ be the real line. Consider the following subsets of the plane $$R \times R:$$
$$\eqalign{ & S = \left\{ {\left( {x,y} \right):y = x + 1\,{\text{and }}0 < x < 2} \right\} \cr & T = \left\{ {\left( {x,y} \right):x - y\,\,{\text{is an integer}}} \right\}, \cr} $$
Which one of the following is true?

A Neither $$S$$ nor $$T$$ is an equivalence relation on $$R$$
B Both $$S$$ and $$T$$ are equivalence relation on $$R$$
C $$S$$ is an equivalence relation on $$R$$ but $$T$$ is not
D $$T$$ is an equivalence relation on $$R$$ but $$S$$ is not
Answer :   $$T$$ is an equivalence relation on $$R$$ but $$S$$ is not

22. If $$\left| z \right| = 1\,{\text{and }}z \ne \pm 1,$$    then all the values of $$\frac{z}{{1 - {z^2}}}$$  lie on

A a line not passing through the origin
B $$\left| z \right| = \sqrt 2 $$
C the $$x$$ - axis
D the $$y$$ - axis
Answer :   the $$y$$ - axis

23. The smallest positive integer $$n$$ for which $${\left( {\frac{{1 + i}}{{1 - i}}} \right)^n} = 1\,{\text{is}}$$

A $$n = 8$$
B $$n = 16$$
C $$n = 12$$
D none of these
Answer :   none of these

24. Let $$x_1$$ and $$y_1$$ be real numbers. If $$z_1$$ and $$z_2$$ are complex numbers such that $$\left| {{z_1}} \right| = \left| {{z_2}} \right| = 4,$$   then $${\left| {{x_1}{z_1} - {y_1}{z_2}} \right|^2} + {\left| {{y_1}{z_1} + {x_1}{z_2}} \right|^2} =? $$

A $$32\left( {{x_1}^2 + {y_1}^2} \right)$$
B $$16\left( {{x_1}^2 + {y_1}^2} \right)$$
C $$4\left( {{x_1}^2 + {y_1}^2} \right)$$
D $$32\left( {{x_1}^2 + {y_1}^2} \right){\left| {{z_1} + {z_2}} \right|^2}$$
Answer :   $$32\left( {{x_1}^2 + {y_1}^2} \right)$$

25. Let complex numbers $$\alpha \,\,{\text{and }}\frac{1}{{\overline \alpha }}$$   lie on circles $${\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} = {r^2}\,\,{\text{and}}\,\,\,{\left( {x - {x_0}} \right)^2} + {\left( {y - {y_0}} \right)^2} = 4{r^2}$$            respectively. If $${z_0} = {x_0} + i{y_0}$$   satisfies the equation $$2{\left| {{z_0}} \right|^2} = {r^2} + 2,{\text{then}}\,\left| \alpha \right| = $$

A $$\frac{1}{{\sqrt 2 }}$$
B $$\frac{1}{2}$$
C $$\frac{1}{{\sqrt 7 }}$$
D $$\frac{1}{3}$$
Answer :   $$\frac{1}{{\sqrt 7 }}$$

26. If $$\operatorname{Re} \left( {\frac{{z + 4}}{{2z - i}}} \right) = \frac{1}{2}$$    then $$z$$ is represented by a point lying on

A a circle
B an ellipse
C a straight line
D none of these
Answer :   a straight line

27. A complex number $$z$$ is said to be unimodular if $$\left| z \right| = 1.$$  Suppose $${z_1}\,{\text{and }}{z_2}$$  are complex numbers such that $$\frac{{{z_1} - 2{z_2}}}{{2 - {z_1}{{\overline z }_2}}}$$  is unimodular and $${{z_2}}$$ is not unimodular. Then the point $${{z_2}}$$ lies on a:

A circle of radius 2.
B circle of radius $$\sqrt 2. $$
C straight line parallel to $$x$$ - axis.
D straight line parallel to $$y$$ - axis.
Answer :   circle of radius 2.

28. If $${\left( {\sqrt 3 + i} \right)^n} = {\left( {\sqrt 3 - i} \right)^n},n \in N$$      then the least value of $$n$$ is

A 3
B 4
C 6
D None of these
Answer :   6

29. $$A + iB$$  form of $$\frac{{\left( {\cos x + i\sin x} \right)\left( {\cos y + i\sin y} \right)}}{{\left( {\cot u + i} \right)\left( {1 + i\tan v} \right)}}$$      is equal to :

A $$\sin u\cos v\left[ {\cos \left( {x + y - u - v} \right) + i\sin \left( {x + y - u - v} \right)} \right]$$
B $$\sin u\cos v\left[ {\cos \left( {x + y + u + v} \right) + i\sin \left( {x + y + u + v} \right)} \right]$$
C $$\sin u\cos v\left[ {\cos \left( {x + y + u + v} \right) - i\sin \left( {x + y - u + v} \right)} \right]$$
D None of these
Answer :   $$\sin u\cos v\left[ {\cos \left( {x + y - u - v} \right) + i\sin \left( {x + y - u - v} \right)} \right]$$

30. If $$z\left( {\overline {z + \alpha } } \right) + \overline z \left( {z + \alpha } \right) = 0,$$     where $$\alpha $$ is a complex constant, then $$z$$ is represented by a point on

A a straight line
B a circle
C a parabola
D None of these
Answer :   a circle