Complex Number MCQ Questions & Answers in Algebra | Maths
Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
31.
Let $${z_1}{\text{ and }}{z_2}{\text{ be }}{n^{th}}$$ roots of unity which subtend a right angle at the origin. Then $$n$$ must be of the form
A
$$4k + 1$$
B
$$4k + 2$$
C
$$4k +3$$
D
$$4k$$
Answer :
$$4k$$
$$\eqalign{
& {\text{Let }}z = {\left( 1 \right)^{\frac{1}{n}}} = {\left( {\cos 2k\pi + i\sin 2k\pi } \right)^{\frac{1}{n}}} \cr
& \,\,z = \cos \frac{{2k\pi }}{n} + i\sin \frac{{2k\pi }}{n},k = 0,1,2,.....,n - 1. \cr
& Let\,\,\,{z_1} = \cos \left( {\frac{{2{k_1}\pi }}{n}} \right) + i\sin \left( {\frac{{2{k_1}\pi }}{n}} \right) \cr
& {\text{and }}{z_2} = \cos \left( {\frac{{2{k_2}\pi }}{n}} \right) + i\sin \frac{{2{k_2}\pi }}{n} \cr} $$
be the two values of $$z.$$ s.t. they subtend $$\angle $$ of 90° at origin.
$$\eqalign{
& \therefore \,\,\frac{{2{k_1}\pi }}{n} - \frac{{2{k_2}\pi }}{n} = \pm \frac{\pi }{2} \cr
& \Rightarrow \,\,4\left( {{k_1} - {k_2}} \right) = \pm n \cr} $$
As $${k_1}$$ and $${k_2}$$ are integers and $${k_1} \ne {k_2}.$$
$$\therefore \,\,n = 4k,k \in {\text{I}}$$
32.
Let $$z = x + iy$$ be a complex number where $$x$$ and $$y$$ are integers. Then the area of the rectangle whose vertices are the roots of the equation: $$z{\overline z ^3} + \overline z {z^3} = 350$$ is
A
48
B
32
C
40
D
80
Answer :
48
Given $$z = x + iy$$ where $$x$$ and $$y$$ are integer
Also $$z{\overline z ^3} + \overline z {z^3} = 350$$
$$\eqalign{
& \Rightarrow \,\,{\left| z \right|^2}\left( {{{\overline z }^2} + {z^2}} \right) = 350 \cr
& \Rightarrow \,\,\left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right) = 175 \cr
& \Rightarrow \,\,\left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right) = 25 \times 7\,\,\,\,.....\left( {\text{i}} \right) \cr
& {\text{or}}\,\,\,\left( {{x^2} + {y^2}} \right)\left( {{x^2} - {y^2}} \right) = 35 \times 5\,\,\,\,\,.....\left( {{\text{ii}}} \right) \cr
& \because \,\,\,x\,{\text{and}}\,y\,{\text{are}}\,\operatorname{integers} \cr
& \therefore \,\,\,{x^2} + {y^2} = 25\,\,\,{\text{and}}\,{x^2} - {y^2} = 7\,\,\,\,\,\,\,\,\,\left[ {{\text{From}}\,{\text{eq}}\,\left( {\text{i}} \right)} \right] \cr
& \Rightarrow \,\,{x^2} = 16\,{\text{and}}\,{y^2} = 9 \cr
& \Rightarrow \,\,x = \pm 4\,{\text{and}}\,y = \pm 3 \cr
& \therefore \,\,{\text{Vertices}}\,{\text{of}}\,{\text{rectangle}}\,{\text{are}} \cr
& \,\,\left( {4,3} \right),\left( {4, - 3} \right),\left( { - 4, - 3} \right),\left( { - 4,3} \right). \cr
& {\text{So, area of rectangle}} = 8 \times 6 = 48\,{\text{sq}}{\text{. units}} \cr
& {\text{Now from eq}}{\text{.}}\left( {{\text{ii}}} \right) \cr
& {\text{or }}{x^2} + {y^2} = 35\,\,{\text{and }}{x^2} - {y^2} = 5 \cr} $$
$$ \Rightarrow \,\,{x^2} = 20,$$ which is not possible for any integral value of $$x$$
33.
If $${n_1},{n_2}$$ are positive integers then $${\left( {1 + i} \right)^{{n_1}}} + {\left( {1 + {i^3}} \right)^{{n_1}}} + {\left( {1 + {i^5}} \right)^{{n_2}}} + {\left( {1 + {i^7}} \right)^{{n_2}}}$$ is a real number if and only if
A
$${n_1} = {n_2} + 1$$
B
$${n_1} + 1 = {n_2}$$
C
$${n_1} = {n_2}$$
D
$${n_1},{n_2}$$ are any two positive integers
Answer :
$${n_1},{n_2}$$ are any two positive integers
36.
Let $$z = \cos \theta + i\sin \theta .$$ Then the value of $$\sum\limits_{m = 1}^{15} {{\text{Im}}\left( {{z^{2m - 1}}} \right)} \,\,{\text{at }}\theta = {{\text{2}}^ \circ }$$ is
39.
Let $$A = \left\{ {\theta \in \left( { - \frac{\pi }{2},\pi } \right):\frac{{3 + 2i\sin \theta }}{{1 - 2i{{\sin }^2}\theta }}{\text{ is purely imaginary}}} \right\}$$
Then the sum of the elements in $$A$$ is: