Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

31. Let $${z_1}{\text{ and }}{z_2}{\text{ be }}{n^{th}}$$   roots of unity which subtend a right angle at the origin. Then $$n$$ must be of the form

A $$4k + 1$$
B $$4k + 2$$
C $$4k +3$$
D $$4k$$
Answer :   $$4k$$

32. Let $$z = x + iy$$   be a complex number where $$x$$ and $$y$$ are integers. Then the area of the rectangle whose vertices are the roots of the equation: $$z{\overline z ^3} + \overline z {z^3} = 350$$    is

A 48
B 32
C 40
D 80
Answer :   48

33. If $${n_1},{n_2}$$  are positive integers then $${\left( {1 + i} \right)^{{n_1}}} + {\left( {1 + {i^3}} \right)^{{n_1}}} + {\left( {1 + {i^5}} \right)^{{n_2}}} + {\left( {1 + {i^7}} \right)^{{n_2}}}$$         is a real number if and only if

A $${n_1} = {n_2} + 1$$
B $${n_1} + 1 = {n_2}$$
C $${n_1} = {n_2}$$
D $${n_1},{n_2}$$  are any two positive integers
Answer :   $${n_1},{n_2}$$  are any two positive integers

34. If $$z$$ is a complex number satisfying the relation $$\left| {z + 1} \right| = z + 2\left( {1 + i} \right)$$     then $$z$$ is

A $$\frac{1}{2}\left( {1 + 4i} \right)$$
B $$\frac{1}{2}\left( {3 + 4i} \right)$$
C $$\frac{1}{2}\left( {1 - 4i} \right)$$
D $$\frac{1}{2}\left( {3 - 4i} \right)$$
Answer :   $$\frac{1}{2}\left( {1 - 4i} \right)$$

35. If $$i = \sqrt { - 1} ,{\text{ then }}4 + 5{\left( { - \frac{1}{2} + \frac{{i\sqrt 3 }}{2}} \right)^{334}} + 3{\left( { - \frac{1}{2} + \frac{{i\sqrt 3 }}{2}} \right)^{365}}$$         is equal to

A $$1 - i\sqrt 3 $$
B $$ - 1 + i\sqrt 3 $$
C $$i\sqrt 3 $$
D $$ - i\sqrt 3 $$
Answer :   $$i\sqrt 3 $$

36. Let $$z = \cos \theta + i\sin \theta .$$    Then the value of $$\sum\limits_{m = 1}^{15} {{\text{Im}}\left( {{z^{2m - 1}}} \right)} \,\,{\text{at }}\theta = {{\text{2}}^ \circ }$$     is

A $$\frac{1}{{\sin {2^ \circ }}}$$
B $$\frac{1}{{3\sin {2^ \circ }}}$$
C $$\frac{1}{{2\sin {2^ \circ }}}$$
D $$\frac{1}{{4\sin {2^ \circ }}}$$
Answer :   $$\frac{1}{{4\sin {2^ \circ }}}$$

37. The greatest and the least absolute value of $$z + 1,$$  where $$\left| {z + 4} \right| \leqslant 3$$   are respectively

A 6 and 0
B 10 and 6
C 4 and 3
D None of these
Answer :   6 and 0

38. The conjugate of a complex number is $$\frac{1}{{i - 1}}$$  then that complex number is

A $$\frac{- 1}{{i - 1}}$$
B $$\frac{1}{{i + 1}}$$
C $$\frac{- 1}{{i + 1}}$$
D $$\frac{1}{{i - 1}}$$
Answer :   $$\frac{- 1}{{i + 1}}$$

39. Let $$A = \left\{ {\theta \in \left( { - \frac{\pi }{2},\pi } \right):\frac{{3 + 2i\sin \theta }}{{1 - 2i{{\sin }^2}\theta }}{\text{ is purely imaginary}}} \right\}$$
Then the sum of the elements in $$A$$ is:

A $$\frac{{5\pi }}{6}$$
B $$\pi $$
C $$\frac{{3\pi }}{4}$$
D $$\frac{{2\pi }}{3}$$
Answer :   $$\frac{{2\pi }}{3}$$

40. The roots of the equation $$1 + z + {z^3} + {z^4} = 0$$     are represented by the vertices of

A a square
B an equilateral triangle
C a rhombus
D none of these
Answer :   an equilateral triangle