62.
If $$\left| z \right| = 1$$ then $$\frac{{1 + z}}{{1 + \overline z }}$$ is equal to
A
$$z$$
B
$${ \overline z }$$
C
$${z + \overline z }$$
D
None of these
Answer :
$$z$$
$$\eqalign{
& \frac{{1 + z}}{{1 + \overline z }} = \frac{{z\overline z + z}}{{1 + \overline z }}\left( {\because \,\,\left| z \right| = 1\, \Rightarrow \,{{\left| z \right|}^2} = 1\,\, \Rightarrow \,z\overline z = 1} \right) \cr
& \frac{{1 + z}}{{1 + \overline z }} = \frac{{z\left( {\overline z + 1} \right)}}{{1 + \overline z }} = z. \cr} $$
63.
If $$\alpha $$ is non-real and $$\alpha = \root 5 \of 1 $$ then the value of $${2^{\left| {1 + \alpha + {\alpha ^2} + {\alpha ^{ - 2}} - {\alpha ^{ - 1}}} \right|}}$$ is equal to
64.
Let $$S$$ be the set of all complex numbers $$z$$ satisfying $$\left| {z - 2 + i} \right|\, \geqslant \sqrt 5 .$$ If the complex number $${z_0}$$ is such that $$\frac{1}{{\left| {{z_0} - 1} \right|}}$$ is the maximum of the set $$\left\{ {\frac{1}{{\left| {z - 1} \right|}}:z \in S} \right\},$$ then the principal argument of $$\frac{{4 - {z_0} - {{\overline z }_0}}}{{{z_0} - {{\overline z }_0} + 2i}}$$ is
A
$$\frac{\pi }{4}$$
B
$$\frac{{3\pi }}{4}$$
C
$$\frac{\pi }{2}$$
D
$$ - \frac{\pi }{2}$$
Answer :
$$ - \frac{\pi }{2}$$
$$S:\left| {z - 2 + i} \right|\, \geqslant \sqrt 5 $$ represents boundary and outer region
of circle with center $$\left( {2, - 1} \right)$$ and radius $$\sqrt 5 $$
$${{z_0} \in S},$$ such that $$\frac{1}{{\left| {{z_0} - 1} \right|}}$$ is the maximum.
∴ $${\left| {{z_0} - 1} \right|}$$ is minimum
$${{z_0} \in S}$$ with $${\left| {{z_0} - 1} \right|}$$ as minimum will be a point on boundary of circle of region $$S$$ which lies on radius of this circle, which passes through (1, 0).
$$\therefore \,\,{z_0},1,2 - i$$ are collinear, or $$\left( {{x_0},{y_0}} \right),\left( {1,0} \right),\left( {2, - 1} \right)$$ are collinear.
∴ Using slopes of paralled lines,
$$\eqalign{
& \frac{{{y_0}}}{{{x_0} - 1}} = \frac{{ - 1}}{{2 - 1}} \cr
& \Rightarrow \,\,{y_0} = 1 - {x_0} \cr} $$
$$\eqalign{
& {\text{Now, }}\frac{{4 - {z_0} - {{\overline z }_0}}}{{{z_0} - {{\overline z }_0} + 2i}} \cr
& = \frac{{4 - \left( {{z_0} + {{\overline z }_0}} \right)}}{{\left( {{z_0} - {{\overline z }_0}} \right) + 2i}} \cr
& = \frac{{4 - 2{x_0}}}{{2i{y_0} + 2i}} \cr
& = \frac{{4 - 2{x_0}}}{{2i - 2{x_0}i + 2i}} \cr
& = \frac{{2\left( {2 - {x_0}} \right)}}{{2\left( {2 - {x_0}} \right)}i} \cr
& = \frac{1}{i} = - i \cr
& \therefore \,\,Arg\left( {\frac{{4 - {z_0} - {{\overline z }_0}}}{{{z_0} - {{\overline z }_0} - 2i}}} \right) \cr
& = Arg\left( { - i} \right) \cr
& = \frac{{ - \pi }}{2} \cr} $$
65.
The value of the sum $$\sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} ;$$ where $$i = \sqrt { - 1} $$ is :
$$\eqalign{
& \left| {z - 1} \right| = \left| {z + 1} \right| \cr
& \Rightarrow \,\,{\left( {x - 1} \right)^2} + {y^2} = {\left( {x + 1} \right)^2} + {y^2} \cr} $$
⇒ $$x = 0 ,$$ which represents a straight line. Note $$\left| {\frac{{z - \alpha }}{{z - \beta }}} \right| = k,$$ where $$\alpha ,\beta $$ are complex constants, represents a straight
line if $$k = 1.$$
70.
If $${x^3} - 1 = 0$$ has the non-real complex roots $$\alpha ,\beta $$ then the value of $${\left( {1 + 2\alpha + \beta } \right)^3} - {\left( {3 + 3\alpha + 5\beta } \right)^3}$$ is