Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

61. Let $$\alpha \,{\text{and }}\beta $$  be two roots of the equation $${x^2} + 2x + 2 = 0,$$    then $${\alpha ^{15}} + {\beta ^{15}}$$  is equal to:

A $$- 256$$
B $$512$$
C $$- 512$$
D $$256$$
Answer :   $$- 256$$

62. If $$\left| z \right| = 1$$  then $$\frac{{1 + z}}{{1 + \overline z }}$$  is equal to

A $$z$$
B $${ \overline z }$$
C $${z + \overline z }$$
D None of these
Answer :   $$z$$

63. If $$\alpha $$ is non-real and $$\alpha = \root 5 \of 1 $$  then the value of $${2^{\left| {1 + \alpha + {\alpha ^2} + {\alpha ^{ - 2}} - {\alpha ^{ - 1}}} \right|}}$$    is equal to

A 4
B 2
C 1
D None of these
Answer :   2

64. Let $$S$$ be the set of all complex numbers $$z$$ satisfying $$\left| {z - 2 + i} \right|\, \geqslant \sqrt 5 .$$    If the complex number $${z_0}$$ is such that $$\frac{1}{{\left| {{z_0} - 1} \right|}}$$   is the maximum of the set $$\left\{ {\frac{1}{{\left| {z - 1} \right|}}:z \in S} \right\},$$    then the principal argument of $$\frac{{4 - {z_0} - {{\overline z }_0}}}{{{z_0} - {{\overline z }_0} + 2i}}$$     is

A $$\frac{\pi }{4}$$
B $$\frac{{3\pi }}{4}$$
C $$\frac{\pi }{2}$$
D $$ - \frac{\pi }{2}$$
Answer :   $$ - \frac{\pi }{2}$$

65. The value of the sum $$\sum\limits_{n = 1}^{13} {\left( {{i^n} + {i^{n + 1}}} \right)} ;$$    where $$i = \sqrt { - 1} $$   is :

A $$i$$
B $$- i$$
C $$0$$
D $$i - 1$$
Answer :   $$i - 1$$

66. If $$z$$ is a complex number such that $$z + \left| z \right| = 8 + 12i,$$    then the value of $$\left| {{z^2}} \right|$$ is equal to

A 228
B 144
C 121
D 169
Answer :   169

67. The greatest and the least value of $$\left| {{z_1} + {z_2}} \right|$$  if $$z_1 = 24 + 7i$$   and $$\left| {{z_2}} \right| = 6$$  respectively are

A $$25, 19$$
B $$19, 25$$
C $$ - 19, - 25$$
D $$- 25, - 19$$
Answer :   $$25, 19$$

68. The value of $${\left( {1 + 2\omega + {\omega ^2}} \right)^{3n}} - {\left( {1 + \omega + 2{\omega ^2}} \right)^{3n}}$$       is :

A $$0$$
B $$1$$
C $${{\omega }}$$
D $${{\omega ^2}}$$
Answer :   $$0$$

69. $$\left| {\frac{{z - 1}}{{z + 1}}} \right| = 1$$   represents

A a circle
B an ellipse
C a straight line
D None of these
Answer :   a straight line

70. If $${x^3} - 1 = 0$$   has the non-real complex roots $$\alpha ,\beta $$  then the value of $${\left( {1 + 2\alpha + \beta } \right)^3} - {\left( {3 + 3\alpha + 5\beta } \right)^3}$$      is

A $$- 7$$
B $$6$$
C $$- 5$$
D $$0$$
Answer :   $$- 7$$