Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

71. The minimum value of $$\left| z \right| + \left| {z - i} \right|$$   is

A 0
B 1
C 2
D None of these
Answer :   1

72. $${\sin ^{ - 1}}\left\{ {\frac{1}{i}\left( {z - 1} \right)} \right\},$$    where $$z$$ is non-real, can be the angle of a triangle if

A $${\text{Re}}\left( z \right) = 1,\operatorname{Im} \left( z \right) = 2$$
B $${\text{Re}}\left( z \right) = 1, - 1 \leqslant \operatorname{Im} \left( z \right) \leqslant 1$$
C $${\text{Re}}\left( z \right) + \operatorname{Im} \left( z \right) = 0$$
D None of these
Answer :   $${\text{Re}}\left( z \right) = 1, - 1 \leqslant \operatorname{Im} \left( z \right) \leqslant 1$$

73. If $$z \ne 1\,\,{\text{and }}\frac{{{z^2}}}{{z - 1}}$$    is real, then the point represented by the complex number $$z$$ lies:

A either on the real axis or on a circle passing through the origin.
B on a circle with center at the origin
C either on the real axis or on a circle not passing through the origin.
D on the imaginary axis.
Answer :   either on the real axis or on a circle passing through the origin.

74. Let $$OP \cdot OQ = 1$$   and let $$O, P, Q$$  be three collinear points. If $$O$$ and $$Q$$ represent the complex numbers $$0$$ and $$z$$ then $$P$$ represents

A $$\frac{1}{z}$$
B $${\overline z }$$
C $$\frac{1}{{\overline z }}$$
D None of these
Answer :   $$\frac{1}{{\overline z }}$$

75. If $$z = \frac{\pi }{4}{\left( {1 + i} \right)^4}\left( {\frac{{1 - \sqrt \pi i}}{{\sqrt \pi + i}} + \frac{{\sqrt \pi - i}}{{1 + \sqrt \pi i}}} \right),$$        then $$\left( {\frac{{\left| z \right|}}{{amp\left( z \right)}}} \right)$$  equals

A $$1$$
B $$\pi$$
C $$3\pi$$
D $$4$$
Answer :   $$4$$

76. Let $$z$$ be a complex number such that the imaginary part of $$z$$ is non-zero and $$a = {z^2} + z + 1\,$$   is real. Then a cannot take the value

A $$- 1$$
B $$\frac{1}{3}$$
C $$\frac{1}{2}$$
D $$\frac{3}{4}$$
Answer :   $$\frac{3}{4}$$

77. Let $$z$$ be a complex number of constant modulus such that $${z^2}$$ is purely imaginary then the number of possible values of $$z$$ is

A 2
B 1
C 4
D infinite
Answer :   4

78. What is the value of $${\left( { - \sqrt { - 1} } \right)^{4n + 3}} + {\left( {{i^{41}} + {i^{ - 257}}} \right)^9},{\text{where }}n \in N?$$

A $$0$$
B $$1$$
C $$i$$
D $$ - i$$
Answer :   $$i$$

79. Let $${z_1}$$ and $${z_2}$$ be two non-real complex cube roots of unity and $${\left| {z - {z_1}} \right|^2} + {\left| {z - {z_2}} \right|^2} = \lambda $$     be the equation of a circle with $${z_1},{z_2}$$  as ends of a diameter then the value of $$\lambda $$ is

A $$4$$
B $$3$$
C $$2$$
D $$\sqrt 2 $$
Answer :   $$3$$

80. If $$\left| z \right| = \max \left\{ {\left| {z - 1} \right|,\left| {z + 1} \right|} \right\}$$     then

A $$\left| {z + \bar z} \right| = \frac{1}{2}$$
B $$z + \bar z = 1$$
C $$\left| {z + \bar z} \right| = 1$$
D None of these
Answer :   None of these