83.
$$a, b, c$$ are integers, not all simultaneously equal and $$\omega $$ is cube root of unity $$\left( {\omega \ne 1} \right),$$ then minimum value of $$\left| {a + b\omega + c{\omega ^2}} \right|\,\,{\text{is}}$$
A
0
B
1
C
$$\frac{{\sqrt 3 }}{2}$$
D
$$\frac{1}{2}$$
Answer :
1
Given that $$a, b, c$$ are integers not all equal, $$\omega $$ is cube root of unity $${ \ne 1},$$ then $$\left| {a + b\omega + c{\omega ^2}} \right|\,$$
$$\eqalign{
& = \left| {a + b\left( {\frac{{ - 1 + i\sqrt 3 }}{2}} \right) + c\left( {\frac{{ - 1 - i\sqrt 3 }}{2}} \right)} \right| \cr
& = \left| {\left( {\frac{{2a - b - c}}{2}} \right) + i\left( {\frac{{b\sqrt 3 - c\sqrt 3 }}{2}} \right)} \right| \cr
& = \frac{1}{2}\sqrt {{{\left( {2a - b - c} \right)}^2} + 3{{\left( {b - c} \right)}^2}} \cr
& = \sqrt {\frac{1}{2}\left[ {{{\left( {a - b} \right)}^2} + {{\left( {b - c} \right)}^2} + {{\left( {c - a} \right)}^2}} \right]} \cr} $$
R.H.S. will be min. when $$a = b = c,$$ but we cannot take $$a = b = c$$ as per question.
∴ The min value is obtained when any two are zero and third is a minimum magnitude integer i.e. 1. Thus $$b = c = 0,$$ $$a = 1$$ gives us the minimum value 1.
84.
Let $$\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2},$$ then the value of the det.
\[\left| \begin{array}{l}
1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\
1\,\,\,\,\, - 1 - {\omega ^2}\,\,\,\,\,\,\,\,{\omega ^2}\,\,\\
1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^4}
\end{array} \right|\] is
86.
The smallest positive integral value of $$n$$ for which $${\left( {1 + \sqrt {3}i } \right)^{\frac{n}{2}}}$$ is real is
A
3
B
6
C
12
D
0
Answer :
6
$$\eqalign{
& {\left( {1 + \sqrt {3}i } \right)^{\frac{n}{2}}} = {\left\{ {2\left( {\frac{1}{2} + \frac{{\sqrt 3 }}{2}i} \right)} \right\}^{\frac{n}{2}}} \cr
& {\left( {1 + \sqrt {3}i } \right)^{\frac{n}{2}}} = {2^{\frac{n}{2}}}{\left( {\cos \frac{\pi }{3} + i\sin \frac{\pi }{3}} \right)^{\frac{n}{2}}} \cr
& {\left( {1 + \sqrt {3}i } \right)^{\frac{n}{2}}} = {2^{\frac{n}{2}}}{\left( {\cos \frac{{n\pi }}{3} + i\sin \frac{{n\pi }}{3}} \right)^{\frac{1}{2}}}. \cr} $$
Clearly, the least positive integral value of $$n$$ for which $$\cos\frac{{n\pi }}{3} + i\sin \frac{{n\pi }}{3}$$ is positive real is $$6.$$
87.
Let $$z$$ and $$\omega $$ be two complex numbers such that $$\left| z \right| \leqslant 1,\left| \omega \right| \leqslant 1\,\,{\text{and }}\left| {z + i\omega } \right| = \left| {z - i\overline \omega } \right| = 2$$ then $$z$$ equals
A
1 or $$i$$
B
$$i$$ or $$- i$$
C
1 or $$- 1$$
D
$$i$$ or $$- 1$$
Answer :
1 or $$- 1$$
$$\eqalign{
& {\text{Given that }}\left| {z + i\omega } \right| = \left| {z - i\overline \omega } \right| \cr
& \Rightarrow \,\,\left| {z - \left( { - i\omega } \right)} \right| = \left| {z - \left( { - \overline {i\omega } } \right)} \right| \cr} $$
⇒ $$z$$ lies on perpendicular bisector of the line segment joining $${\left( { - i\omega } \right)}$$ and $${\left( { - \overline {i\omega } } \right)}$$ , which is real axis,
$${\left( { - i\omega } \right)}\,$$ and $${\left( { - \overline {i\omega } } \right)}\,$$ being mirror images of each other.
$$\eqalign{
& \therefore \,\,{\text{Im}}\left( z \right) = 0. \cr
& {\text{If }}z = x\,\,{\text{then }}\left| z \right| \leqslant 1 \cr
& \Rightarrow \,\,{x^2} \leqslant 1 \cr
& \Rightarrow \,\, - 1 \leqslant x \leqslant 1 \cr} $$
∴ $$(C)$$ is the correct option.
88.
If $$z = x - i y$$ and $${z^{\frac{1}{3}}} = p + iq,{\text{then }}\frac{{\left( {\frac{x}{p} + \frac{y}{q}} \right)}}{{\left( {{p^2} + {q^2}} \right)}}$$
equal to
89.
If $$\omega \left( { \ne 1} \right)$$ is a cube root of unity and $${\left( {1 + \omega } \right)^7} = A + B\omega $$ then $$A$$ and $$B$$ are respectively