Complex Number MCQ Questions & Answers in Algebra | Maths

Learn Complex Number MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

81. $$\sum\limits_{k = 33}^{65} {\left( {\sin \frac{{2k\pi }}{8} - i\cos \frac{{2k\pi }}{8}} \right)} $$

A $$1 + i$$
B $$1 - i$$
C $$1 + \frac{i}{{\sqrt 2 }}$$
D $$ \frac{1 - i}{{\sqrt 2 }}$$
Answer :   $$ \frac{1 - i}{{\sqrt 2 }}$$

82. If $$\left( {1 + i} \right)z = \left( {1 - i} \right)\overline z $$     then $$z$$ is

A $$t\left( {1 - i} \right),t \in R$$
B $$t\left( {1 + i} \right),t \in R$$
C $$\frac{t}{{1 + i}},t \in {R^ + }$$
D None of these
Answer :   $$t\left( {1 - i} \right),t \in R$$

83. $$a, b, c$$  are integers, not all simultaneously equal and $$\omega $$ is cube root of unity $$\left( {\omega \ne 1} \right),$$  then minimum value of $$\left| {a + b\omega + c{\omega ^2}} \right|\,\,{\text{is}}$$

A 0
B 1
C $$\frac{{\sqrt 3 }}{2}$$
D $$\frac{1}{2}$$
Answer :   1

84. Let $$\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2},$$    then the value of the det.
\[\left| \begin{array}{l} 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\, - 1 - {\omega ^2}\,\,\,\,\,\,\,\,{\omega ^2}\,\,\\ 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^4} \end{array} \right|\]     is

A $$3\omega $$
B $$3\omega \left( {\omega - 1} \right)$$
C $$3{\omega ^2}$$
D $$3\omega \left( {1 - \omega } \right)$$
Answer :   $$3\omega \left( {\omega - 1} \right)$$

85. If $${\text{amp}}\frac{{z - 2}}{{2z + 3i}} = 0$$    and $${z_0} = 3 + 4i$$   them

A $${z_0}\overline z + {\overline z _0}z = 12$$
B $${z_0}z + {\overline z _0}\overline z = 12$$
C $${z_0}\overline z + {\overline z _0}z = 0$$
D None of these
Answer :   $${z_0}z + {\overline z _0}\overline z = 12$$

86. The smallest positive integral value of $$n$$ for which $${\left( {1 + \sqrt {3}i } \right)^{\frac{n}{2}}}$$  is real is

A 3
B 6
C 12
D 0
Answer :   6

87. Let $$z$$ and $$\omega $$ be two complex numbers such that $$\left| z \right| \leqslant 1,\left| \omega \right| \leqslant 1\,\,{\text{and }}\left| {z + i\omega } \right| = \left| {z - i\overline \omega } \right| = 2$$         then $$z$$ equals

A 1 or $$i$$
B $$i$$ or $$- i$$
C 1 or $$- 1$$
D $$i$$ or $$- 1$$
Answer :   1 or $$- 1$$

88. If $$z = x - i y$$   and $${z^{\frac{1}{3}}} = p + iq,{\text{then }}\frac{{\left( {\frac{x}{p} + \frac{y}{q}} \right)}}{{\left( {{p^2} + {q^2}} \right)}}$$      equal to

A $$ - 2$$
B $$ - 1$$
C $$2$$
D $$1$$
Answer :   $$ - 2$$

89. If $$\omega \left( { \ne 1} \right)$$  is a cube root of unity and $${\left( {1 + \omega } \right)^7} = A + B\omega $$     then $$A$$ and $$B$$ are respectively

A $$0, 1$$
B $$1, 1$$
C $$1, 0$$
D $$- 1, 1$$
Answer :   $$1, 1$$

90. If $$\left| {z - 2} \right| = \min \left\{ {\left| {z - 1} \right|,\left| {z - 5} \right|} \right\}$$      where $$z$$ is a complex number, then

A $$\operatorname{Re} \left( z \right) = \frac{3}{2}$$
B $$\operatorname{Re} \left( z \right) = \frac{7}{2}$$
C $$\operatorname{Re} \left( z \right) \in \left\{ {\frac{3}{2},\frac{7}{2}} \right\}$$
D None of these
Answer :   $$\operatorname{Re} \left( z \right) \in \left\{ {\frac{3}{2},\frac{7}{2}} \right\}$$