Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

91. If $$l_r^2 + m_r^2 + n_r^2 = 1;r = 1,2,3$$      and $${l_r}{l_s} + {m_r}{m_s} + {n_r}{n_s} = 0;r \ne s,r = 1,2,3;s = 1,2,3,$$           then the value of \[\left| {\begin{array}{*{20}{c}} {{l_1}}&{{m_1}}&{{n_1}}\\ {{l_2}}&{{m_2}}&{{n_2}}\\ {{l_3}}&{{m_3}}&{{n_3}} \end{array}} \right|\]   is

A $$0$$
B $$ \pm 1$$
C $$2$$
D None of these
Answer :   $$ \pm 1$$

92. If $$1,\omega ,{\omega ^2}$$   are the cube roots of unity, then \[\Delta = \left| \begin{array}{l} \,1\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^n }\,\,\,\,\,\,\,\,\,\,{\omega ^{2n}}\\ {\omega ^n}\,\,\,\,\,\,\,\,\,{\omega ^{2n}}\,\,\,\,\,\,\,\,\,1\\ {\omega ^{2n}}\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^n} \end{array} \right|\]     is equal to

A \[{\omega ^2}\]
B 0
C 1
D \[{\omega}\]
Answer :   0

93. The equations $$x + y + z = 6, x + 2y + 3z = 10, x + 2y + mz = n$$          give infinite number of values of the triplet $$(x, y, z)$$  if

A $$m = 3,n \in R$$
B $$m = 3,n \ne 10$$
C $$m = 3,n = 10$$
D None of these
Answer :   $$m = 3,n = 10$$

94. Let $$x < 1,$$  then value of \[\left| {\begin{array}{*{20}{c}} {{x^2} + 2}&{2x + 1}&1\\ {2x + 1}&{x + 2}&1\\ 3&3&1 \end{array}} \right|\]     is

A Non-negative
B Non-positive
C Negative
D Positive
Answer :   Negative

95. If \[A = \left[ {\begin{array}{*{20}{c}} 0&{ - 4}&1 \\ 2&\lambda &{ - 3} \\ 1&2&{ - 1} \end{array}} \right]\]    then $${A^{ - 1}}$$ exists (i.e., $$A$$ is invertible) if

A $$\lambda \ne 4$$
B $$\lambda \ne 8$$
C $$\lambda = 4$$
D None of these
Answer :   $$\lambda \ne 8$$

96. Let $$a, b, c$$  be the real numbers. Then following system of equations in $$x, y$$  and $$z$$
$$\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} - \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1,$$    $$ - \frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} + \frac{{{z^2}}}{{{c^2}}} = 1$$     has

A no solution
B unique solution
C infinitely many solutions
D finitely many solutions
Answer :   finitely many solutions

97. If \[{A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} 1&{ - 2}\\ { - 2}&2 \end{array}} \right],\]    what is $$det\left( A \right)\,?$$

A $$2$$
B $$- 2$$
C $$\frac{1}{2}$$
D $$ - \frac{1}{2}$$
Answer :   $$ - \frac{1}{2}$$

98. The value of \[\left| {\begin{array}{*{20}{c}} x&{{x^2} - yz}&1 \\ y&{{y^2} - zx}&1 \\ z&{{z^2} - xy}&1 \end{array}} \right|\]    is

A $$1$$
B $$ - 1$$
C $$0$$
D $$ - xyz$$
Answer :   $$0$$

99. Matrix $$A$$ such that $$A^2 = 2A – I,$$   where $$I$$ is the identity matrix, then for $$n \geqslant 2,{A^n}$$   is equal to

A $${2^{n - 1}} A - \left( {n - 1} \right)I$$
B $$2^{n - 1} A - I$$
C $$ nA - \left( {n - 1} \right)I$$
D $$nA - I$$
Answer :   $$ nA - \left( {n - 1} \right)I$$

100. If $$\left[ a \right]$$ denotes the integral part of $$a$$ and $$x = {a_3}y + {a_2}z, y = {a_1}z + {a_3}z$$      and $$z = {a_2}x + {a_1}y,$$    where $$x, y, z$$  are not all zero. If $${a_1} = m – \left[ m \right], m$$    being a non-integral constant, then $${a_1}{a_2}{a_3}$$  is

A $$> 1$$
B $$> - 1$$
C $$< 1$$
D $$< - 1$$
Answer :   $$> - 1$$