Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

101. Let $${S_k} = {\alpha ^k} + {\beta ^k} + {\gamma ^k},$$    then \[\Delta = \left| {\begin{array}{*{20}{c}} {{S_0}}&{{S_1}}&{{S_2}}\\ {{S_1}}&{{S_2}}&{{S_3}}\\ {{S_2}}&{{S_3}}&{{S_4}} \end{array}} \right|\]    is equal to

A $$S_6$$
B $$S_5 - S_3$$
C $$S_6 - S_4$$
D None
Answer :   None

102. The number of values of $$k$$ for which the system of equations $$\left( {k + 1} \right)x + 8y = 4k;kx + \left( {k + 3} \right)y = 3k - 1$$         has infinitely many solutions is

A 0
B 1
C 2
D infinite
Answer :   1

103. If the system of equations
$$\eqalign{ & ax + by + c = 0 \cr & bx + cy + a = 0 \cr & cx + ay + b = 0 \cr} $$
has a solution then the system of equations
$$\eqalign{ & \left( {b + c} \right)x + \left( {c + a} \right)y + \left( {a + b} \right)z = 0 \cr & \left( {c + a} \right)x + \left( {a + b} \right)y + \left( {b + c} \right)z = 0 \cr & \left( {a + b} \right)x + \left( {b + c} \right)y + \left( {c + a} \right)z = 0 \cr} $$
has

A only one solution
B no solution
C infinite number of solutions
D None of these
Answer :   infinite number of solutions

104. If $$C = 2\cos \theta ,$$   then the value of the determinant \[\Delta = \left[ {\begin{array}{*{20}{c}} C&1&0\\ 1&C&1\\ 6&1&C \end{array}} \right]\]    is

A $$\frac{{2\,{{\sin }^2}2\theta }}{{\sin \theta }}$$
B $$8\,{\cos ^3}\theta - 4\cos \theta + 6$$
C $$\frac{{2\,{{\sin }}2\theta }}{{\sin \theta }}$$
D $$8\,{\cos ^3}\theta + 4\cos \theta + 6$$
Answer :   $$8\,{\cos ^3}\theta - 4\cos \theta + 6$$

105. If \[D = \left| \begin{array}{l} 1\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\,\,\,1 + x\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,1 + y \end{array} \right|\]     $${\text{for }}x \ne 0,y \ne 0,$$    then $$D$$ is

A divisible by $$x$$ but not $$y$$
B divisible by $$y$$ but not $$x$$
C divisible by neither $$x$$ nor $$y$$
D divisible by both $$x$$ and $$y$$
Answer :   divisible by both $$x$$ and $$y$$

106. If \[f\left( x \right) = \left| {\begin{array}{*{20}{c}} {{x^{n - 1}}}&{\cos x}&{\frac{1}{{x + 3}}}\\ 0&{\cos \frac{{n\pi }}{2}}&{\frac{{{{\left( { - 1} \right)}^n}n!}}{{{3^{n + 1}}}}}\\ \alpha &{{\alpha ^3}}&{{\alpha ^5}} \end{array}} \right|\]       then $$\frac{{{d^n}}}{{d{x^n}}}{\left[ {f\left( x \right)} \right]_{x = 0}} = $$

A $$1$$
B $$ - 1$$
C $$0$$
D None of these
Answer :   $$0$$

107. If $$\sqrt { - 1} = i,$$  and $$\omega $$ is a non-real cube root of unity then the value of \[\left| {\begin{array}{*{20}{c}} 1&{{\omega ^2}}&{1 + i + {\omega ^2}} \\ { - i}&{ - 1}&{ - 1 - i + \omega } \\ {1 - i}&{{\omega ^2} - 1}&{ - 1} \end{array}} \right|\]      is equal to

A $$1$$
B $$i$$
C $$\omega $$
D $$0$$
Answer :   $$0$$

108. If $$A$$ is symmetric as well as skew-symmetric matrix, then $$A$$ is

A Diagonal
B Null
C Triangular
D None of these
Answer :   Null

109. If $$adj\,B = A,\left| P \right| = \left| Q \right| = 1,$$     then $$adj\,\left( {{Q^{ - 1}}B{P^{ - 1}}} \right)$$    is

A $$PQ$$
B $$QAP$$
C $$PAQ$$
D $$P{A^{- 1}}Q$$
Answer :   $$PAQ$$

110. If $$A$$ and $$B$$ be two square matrices of order $$\lambda $$ whose all the elements are essentially positive integers then the minimum value of $$tr\left( {A{B^2}} \right)$$   is equal to

A $$\lambda^3 $$
B $$\lambda^2 $$
C $$2\lambda^2 $$
D None of these
Answer :   $$\lambda^2 $$