Matrices and Determinants MCQ Questions & Answers in Algebra | Maths
Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
121.
Two non-zero distinct numbers $$a, b$$ are used as elements to make determinants of the third order. The number of determinants whose value is zero for all $$a, b$$ is
A
$$24$$
B
$$32$$
C
$$a + b$$
D
None of these
Answer :
$$32$$
As the determinant has to vanish for all $$a, b,$$ we have at least two rows or two columns identical.
After filling the first column in $$2 \times 2 \times 2$$ ways and filling another column likewise, the remaining column can be filled in $$2 \times 2 \times 2$$ ways. So, the number of ways $$ = {2^3} \times {2^3} = {2^6}.$$
But each of the two ways give the same determinant.
∴ the required number of determinants $$= 32.$$
122.
If \[A = \left[ {\begin{array}{*{20}{c}}
0&1\\
0&0
\end{array}} \right],\] $$I$$ is the unit matrix of order 2 and $$a, b$$ are arbitrary constants, then $${\left( {aI + bA} \right)^2}$$ is equal to
123.
The number of $$3 \times 3$$ matrices $$A$$ whose entries are either 0 or 1 and for which the system \[A\left[ \begin{array}{l}
x\\
y\\
z
\end{array} \right] = \left[ \begin{array}{l}
1\\
0\\
0
\end{array} \right]\] has exactly two distinct solutions, is
A
0
B
$${2^9} - 1$$
C
168
D
2
Answer :
0
Let \[A\left[ \begin{array}{l}
{a_1}\,\,\,{b_1}\,\,\,{c_1}\\
{a_2}\,\,\,{b_2}\,\,{c_2}\\
{a_3}\,\,\,{b_3}\,\,\,{c_3}
\end{array} \right]\] $$\eqalign{
& {\text{where }}{a_i},{b_i},{c_i}\,{\text{have}} \cr
& {\text{values 0 or 1 for }}i = 1,2,3. \cr} $$
Then the given system is equivalent to
$$\eqalign{
& {a_1}x + {b_1}y + {c_1}z = 1, \cr
& {a_2}x + {b_2}y + {c_2}z = 0, \cr
& {a_3}x + {b_3}y + {c_3}z = 0. \cr} $$
Which represents three distinct planes. But three planes can not intersect at two distinct points, therefore no such system exists.
124.
If \[{\left[ {\begin{array}{*{20}{c}}
1&x&1
\end{array}} \right]_{1 \times 3}}{\left[ {\begin{array}{*{20}{c}}
1&3&2\\
2&5&1\\
{15}&3&2
\end{array}} \right]_{3 \times 3}}{\left[ {\begin{array}{*{20}{c}}
1\\
2\\
x
\end{array}} \right]_{3 \times 1}} = 0,\] then $$x$$ is
125.
Let $$A$$ be an $$n \times n$$ matrix. If $$\det \left( {\lambda A} \right) = {\lambda ^s}\det \left( A \right),$$ what is the value of $$s \,?$$
A
$$0$$
B
$$1$$
C
$$ - 1$$
D
$$n$$
Answer :
$$n$$
We know, if $$A$$ is an $$n \times n$$ matrix, then $$\det \left( {\lambda A} \right) = {\lambda ^s}\det \left( A \right)$$
But given $$\det \left( {\lambda A} \right) = {\lambda ^s}\det A$$
⇒ $$s = n$$
126.
If $$\omega $$ is a complex cube root of unity, then value of \[\Delta = \left| {\begin{array}{*{20}{c}}
{{a_1} + {b_1}\omega }&{{a_1}{\omega ^2} + {b_1}}&{{c_1} + {b_1}\bar \omega }\\
{{a_2} + {b_2}\omega }&{{a_2}{\omega ^2} + {b_2}}&{{c_2} + {b_2}\bar \omega }\\
{{a_3} + {b_3}\omega }&{{a_3}{\omega ^2} + {b_3}}&{{c_3} + {b_3}\bar \omega }
\end{array}} \right|\] is
127.
Let $$A$$ be a $$2 \times 2$$ matrix with real entries. Let $$I$$ be the $$2 \times 2$$ identity matrix. Denote by $$tr\,(A),$$ the sum of diagonal entries of $$a.$$ Assume that $${A^2} = I.$$ Statement - 1 :
If $$A \ne I$$ and $$A \ne - I,$$ then $$\det \left( A \right) = - 1$$ Statement - 2 :
If $$A \ne I$$ and $$A \ne - I,$$ then $${\text{tr}}\left( A \right) \ne 0.$$
A
Statement -1 is false, Statement-2 is true
B
Statement -1 is true, Statement-2 is true; Statement -2 is
a correct explanation for Statement-1
C
Statement -1 is true, Statement-2 is true; Statement -2
is not a correct explanation for Statement-1
D
Statement -1 is true, Statement-2 is false
Answer :
Statement -1 is true, Statement-2 is false
\[{\rm{Let }}\,\,A = \left[ \begin{array}{l}
a\,\,\,\,\,b\\
c\,\,\,\,\,d
\end{array} \right]{\rm{then }}\,\,{A^2} = I\]
$$\eqalign{
& \Rightarrow \,\,{a^2} + bc = 1\,\,\,\,\,\,\,\,\,ab + bd = 0 \cr
& \,\,\,\,\,\,ac + cd = 0\,\,\,\,\,\,\,\,\,bc + {d^2} = 1 \cr} $$
From these four relations,
$$\eqalign{
& \,\,\,\,\,\,\,\,\,{a^2} + bc = bc + {d^2} \Rightarrow \,{a^2} = {d^2} \cr
& {\text{and }}b\left( {a + d} \right) = 0 = c\left( {a + d} \right) \Rightarrow \,\,a = - d \cr} $$
We can take $$a = 1,b = 0,c = 0,d = - 1\,\,{\text{as one}}$$
possible set of values, then \[A = \left[ \begin{array}{l}
1\,\,\,\,\,\,\,\,0\\
0\,\,\,\, - 1
\end{array} \right]\]
Clearly $$A \ne I$$ and $$A \ne - I$$ and det $$A = - 1$$
∴ Statement 1 is true.
Also if $$A \ne I$$ then tr$$(A) = 0$$
∴ Statement 2 is false.
128.
If \[A = \left[ \begin{array}{l}
\alpha \,\,\,\,\,\,0\\
1\,\,\,\,\,\,\,\,1
\end{array} \right]{\rm{ and }}\,\,B = \left[ \begin{array}{l}
1\,\,\,\,\,\,\,0\\
5\,\,\,\,\,\,\,1
\end{array} \right],\] then value of $$\alpha $$ for which $${A^2} = B,$$ is
A
1
B
$$- 1$$
C
4
D
no real values
Answer :
no real values
\[{\rm{Given\,\, that }}\,\,A = \left[ \begin{array}{l}
\alpha \,\,\,\,\,\,0\\
1\,\,\,\,\,\,\,\,1
\end{array} \right]{\rm{ and}}\,{\rm{ }}B = \left[ \begin{array}{l}
1\,\,\,\,\,\,\,0\\
5\,\,\,\,\,\,\,1
\end{array} \right]\]
$${\text{and }}{A^2} = B$$
\[\begin{array}{l}
\Rightarrow \,\,\left[ \begin{array}{l}
\alpha \,\,\,\,\,\,0\\
1\,\,\,\,\,\,\,\,1
\end{array} \right]\left[ \begin{array}{l}
\alpha \,\,\,\,\,\,0\\
1\,\,\,\,\,\,\,\,1
\end{array} \right] = \left[ \begin{array}{l}
1\,\,\,\,\,\,\,\,0\\
5\,\,\,\,\,\,\,\,1
\end{array} \right]\\
\Rightarrow \,\,\left[ \begin{array}{l}
{\alpha ^2}\,\,\,\,\,\,\,\,\,\,\,\,0\\
\alpha + 1\,\,\,\,\,\,\,\,1
\end{array} \right] = \left[ \begin{array}{l}
1\,\,\,\,\,\,\,\,0\\
5\,\,\,\,\,\,\,\,1
\end{array} \right]
\end{array}\]
$$\eqalign{
& \Rightarrow \,\,{\alpha ^2} = 1\,\,{\text{and }}\alpha + 1 = 5 \cr
& \Rightarrow \,\,\alpha = \pm 1\,\,{\text{and }}\alpha = 4 \cr} $$
$$\because $$ There is no common value
∴ There is no real value of $$\alpha $$ for which $${A^2} = B$$
129.
Consider the following in respect of the matrix \[A = \left( {\begin{array}{*{20}{c}}
{ - 1}&1\\
1&{ - 1}
\end{array}} \right):\]
$$\eqalign{
& 1.{A^2} = - A \cr
& 2.{A^3} = 4A \cr} $$
Which of the above is/are correct ?