Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

121. Two non-zero distinct numbers $$a, b$$  are used as elements to make determinants of the third order. The number of determinants whose value is zero for all $$a, b$$  is

A $$24$$
B $$32$$
C $$a + b$$
D None of these
Answer :   $$32$$

122. If \[A = \left[ {\begin{array}{*{20}{c}} 0&1\\ 0&0 \end{array}} \right],\]   $$I$$ is the unit matrix of order 2 and $$a, b$$  are arbitrary constants, then $${\left( {aI + bA} \right)^2}$$   is equal to

A $${a^2}I + abA$$
B $${a^2}I + 2abA$$
C $${a^2}I + {b^2}A$$
D None of these
Answer :   $${a^2}I + 2abA$$

123. The number of $$3 \times 3$$  matrices $$A$$ whose entries are either 0 or 1 and for which the system \[A\left[ \begin{array}{l} x\\ y\\ z \end{array} \right] = \left[ \begin{array}{l} 1\\ 0\\ 0 \end{array} \right]\]   has exactly two distinct solutions, is

A 0
B $${2^9} - 1$$
C 168
D 2
Answer :   0

124. If \[{\left[ {\begin{array}{*{20}{c}} 1&x&1 \end{array}} \right]_{1 \times 3}}{\left[ {\begin{array}{*{20}{c}} 1&3&2\\ 2&5&1\\ {15}&3&2 \end{array}} \right]_{3 \times 3}}{\left[ {\begin{array}{*{20}{c}} 1\\ 2\\ x \end{array}} \right]_{3 \times 1}} = 0,\]         then $$x$$ is

A $$2$$
B $$- 2$$
C $$14$$
D None of these
Answer :   $$- 2$$

125. Let $$A$$ be an $$n \times n$$  matrix. If $$\det \left( {\lambda A} \right) = {\lambda ^s}\det \left( A \right),$$     what is the value of $$s \,?$$

A $$0$$
B $$1$$
C $$ - 1$$
D $$n$$
Answer :   $$n$$

126. If $$\omega $$ is a complex cube root of unity, then value of \[\Delta = \left| {\begin{array}{*{20}{c}} {{a_1} + {b_1}\omega }&{{a_1}{\omega ^2} + {b_1}}&{{c_1} + {b_1}\bar \omega }\\ {{a_2} + {b_2}\omega }&{{a_2}{\omega ^2} + {b_2}}&{{c_2} + {b_2}\bar \omega }\\ {{a_3} + {b_3}\omega }&{{a_3}{\omega ^2} + {b_3}}&{{c_3} + {b_3}\bar \omega } \end{array}} \right|\]        is

A $$0$$
B $$- 1$$
C $$2$$
D None of these
Answer :   $$0$$

127. Let $$A$$ be a $$2 \times 2$$  matrix with real entries. Let $$I$$ be the $$2 \times 2$$  identity matrix. Denote by $$tr\,(A),$$  the sum of diagonal entries of $$a.$$ Assume that $${A^2} = I.$$
Statement - 1 :
If $$A \ne I$$  and $$A \ne - I,$$  then $$\det \left( A \right) = - 1$$
Statement - 2 :
If $$A \ne I$$  and $$A \ne - I,$$  then $${\text{tr}}\left( A \right) \ne 0.$$

A Statement -1 is false, Statement-2 is true
B Statement -1 is true, Statement-2 is true; Statement -2 is a correct explanation for Statement-1
C Statement -1 is true, Statement-2 is true; Statement -2 is not a correct explanation for Statement-1
D Statement -1 is true, Statement-2 is false
Answer :   Statement -1 is true, Statement-2 is false

128. If \[A = \left[ \begin{array}{l} \alpha \,\,\,\,\,\,0\\ 1\,\,\,\,\,\,\,\,1 \end{array} \right]{\rm{ and }}\,\,B = \left[ \begin{array}{l} 1\,\,\,\,\,\,\,0\\ 5\,\,\,\,\,\,\,1 \end{array} \right],\]       then value of $$\alpha $$ for which $${A^2} = B,$$  is

A 1
B $$- 1$$
C 4
D no real values
Answer :   no real values

129. Consider the following in respect of the matrix \[A = \left( {\begin{array}{*{20}{c}} { - 1}&1\\ 1&{ - 1} \end{array}} \right):\]
$$\eqalign{ & 1.{A^2} = - A \cr & 2.{A^3} = 4A \cr} $$
Which of the above is/are correct ?

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2
Answer :   1 only

130. If the system of equations $$x - ky - z = 0, kx - y - z = 0, x + y - z = 0$$         has a non-zero solution, then the possible values of $$k$$ are

A $$- 1, 2$$
B $$1, 2$$
C $$0, 1$$
D $$- 1, 1$$
Answer :   $$- 1, 1$$