Matrices and Determinants MCQ Questions & Answers in Algebra | Maths
Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
141.
The system of equations
$$\eqalign{
& \alpha x + y + z = \alpha - 1 \cr
& x + \alpha y + z = \alpha - 1 \cr
& x + y + \alpha z = \alpha - 1 \cr} $$
has infinite solutions, if $$\alpha $$ is
143.
The set of all values of $$\lambda $$ for which the system of linear equations:
$$\eqalign{
& 2{x_1} - 2{x_2} + {x_3} = \lambda {x_1} \cr
& 2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2} \cr
& - {x_1} + 2{x_2} = \lambda {x_3} \cr} $$
has a non-trivial solution
144.
If $$\left| {{A_{n \times n}}} \right| = 3$$ and $$\left| {adj\,A} \right| = 243,$$ what is the value of $$n \,?$$
A
4
B
5
C
6
D
7
Answer :
6
As given : $$\left| {{A_{n \times n}}} \right| = 3{\text{ and }}\left| {adj\,A} \right| = 243$$
Dterminant of adjoint $$A$$ 13 given by : $$\left| {adj\,A} \right| = {\left| {{A_{n \times n}}} \right|^{n - 1}}$$
$$\eqalign{
& \Rightarrow 243 = {3^{n - 1}} \cr
& \Rightarrow {3^5} = {3^{n - 1}} \cr
& \Rightarrow n - 1 = 5 \cr
& \Rightarrow n = 6 \cr} $$
145.
Let \[P = \left[ {\begin{array}{*{20}{c}}
1&0&0\\
4&1&0\\
{16}&4&1
\end{array}} \right]\] and $$I$$ be the identity matrix of order 3. If $$Q = \left[ {{q_{ij}}} \right]$$ is a matrix such that $${P^{50}} - Q = I,{\text{then }}\frac{{{q_{31}} + {q_{32}}}}{{{q_{21}}}}$$ equals
146.
If \[A = \left( {\begin{array}{*{20}{c}}
p&q\\
0&1
\end{array}} \right),\] then \[{A^8} = \left( {\begin{array}{*{20}{c}}
{{p^8}}&{q\left( {\frac{{{p^8} - 1}}{{p - 1}}} \right)}\\
0&K
\end{array}} \right).\] The value of $$k$$ is
147.
Let \[{A} = \left[ {\begin{array}{*{20}{c}}
1&1&1\\
1&1&1\\
1&1&1
\end{array}} \right]\] be a square matrix of order 3. Then for any positive integer $$n,$$ what is $$A^n$$ equal to ?
150.
Let \[M = \left[ \begin{array}{l}
\,\,\,{\sin ^4}\theta \,\,\,\,\,\,\,\,\,\,\, - 1 - {\sin ^2}\theta \\
1 + {\cos ^2}\theta \,\,\,\,\,\,\,\,\,\,\,\,\,\,{\cos ^4}\theta
\end{array} \right] = \alpha I + \beta {M^{ - 1}}\] Where $$\alpha = \alpha \left( \theta \right){\text{and }}\beta = \beta \left( \theta \right)$$ are real numbers, and $$I$$ is the $$2 \times 2$$ identity matrix. If $${a^*}$$ is the minimum of the set $$\left\{ {\alpha \left( \theta \right):\theta \in \left[ {0,2\pi } \right)} \right\}$$ and $${\beta ^*}$$ is the minimum of the set $$\left\{ {\beta \left( \theta \right):\theta \in \left[ {0,2\pi } \right)} \right\}.$$ Then the value of $${a^*} + {b^ * }$$ is