Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

141. The system of equations
$$\eqalign{ & \alpha x + y + z = \alpha - 1 \cr & x + \alpha y + z = \alpha - 1 \cr & x + y + \alpha z = \alpha - 1 \cr} $$
has infinite solutions, if $$\alpha $$ is

A $$- 2$$
B either $$- 2$$ or 1
C not $$- 2$$
D 1
Answer :   $$- 2$$

142. The value of the determinant \[\left| {\begin{array}{*{20}{c}} {{{\cos }^2}{{54}^ \circ }}&{{{\cos }^2}{{36}^ \circ }}&{\cot {{135}^ \circ }}\\ {{{\sin }^2}{{53}^ \circ }}&{\cot {{135}^ \circ }}&{{{\sin }^2}{{37}^ \circ }}\\ {\cot {{135}^ \circ }}&{{{\cos }^2}{{25}^ \circ }}&{{{\cos }^2}{{65}^ \circ }} \end{array}} \right|\]       is equal to

A $$ - 2$$
B $$ - 1$$
C $$0$$
D $$1$$
Answer :   $$0$$

143. The set of all values of $$\lambda $$ for which the system of linear equations:
$$\eqalign{ & 2{x_1} - 2{x_2} + {x_3} = \lambda {x_1} \cr & 2{x_1} - 3{x_2} + 2{x_3} = \lambda {x_2} \cr & - {x_1} + 2{x_2} = \lambda {x_3} \cr} $$
has a non-trivial solution

A contains two elements
B contains more than two elements
C is an empty set
D is a singleton
Answer :   contains two elements

144. If $$\left| {{A_{n \times n}}} \right| = 3$$   and $$\left| {adj\,A} \right| = 243,$$    what is the value of $$n \,?$$

A 4
B 5
C 6
D 7
Answer :   6

145. Let \[P = \left[ {\begin{array}{*{20}{c}} 1&0&0\\ 4&1&0\\ {16}&4&1 \end{array}} \right]\]   and $$I$$ be the identity matrix of order 3. If $$Q = \left[ {{q_{ij}}} \right]$$  is a matrix such that $${P^{50}} - Q = I,{\text{then }}\frac{{{q_{31}} + {q_{32}}}}{{{q_{21}}}}$$      equals

A 52
B 103
C 201
D 205
Answer :   103

146. If \[A = \left( {\begin{array}{*{20}{c}} p&q\\ 0&1 \end{array}} \right),\]   then \[{A^8} = \left( {\begin{array}{*{20}{c}} {{p^8}}&{q\left( {\frac{{{p^8} - 1}}{{p - 1}}} \right)}\\ 0&K \end{array}} \right).\]     The value of $$k$$ is

A $$1$$
B $$0$$
C $$2$$
D $$- 1$$
Answer :   $$1$$

147. Let \[{A} = \left[ {\begin{array}{*{20}{c}} 1&1&1\\ 1&1&1\\ 1&1&1 \end{array}} \right]\]   be a square matrix of order 3. Then for any positive integer $$n,$$ what is $$A^n$$ equal to ?

A $$A$$
B $$3^n A$$
C $$\left( {{3^{n - 1}}} \right)A$$
D $$3A$$
Answer :   $$\left( {{3^{n - 1}}} \right)A$$

148. The maximum and minimum value of $$\left( {3 \times 3} \right)$$  determinant whose elements belongs to $$\left\{ {0,1} \right\}$$  is

A $$1, - 1$$
B $$2, - 2$$
C $$4, - 4$$
D None of these
Answer :   $$2, - 2$$

149. If \[\left[ {\begin{array}{*{20}{c}} 2&0&7\\ 0&1&0\\ 1&{ - 2}&1 \end{array}} \right]\left[ {\begin{array}{*{20}{c}} { - x}&{14x}&{7x}\\ 0&1&0\\ x&{ - 4x}&{ - 2x} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} 1&0&0\\ 0&1&0\\ 0&0&1 \end{array}} \right]\]         then find the value of $$x$$

A $$\frac{1}{2}$$
B $$\frac{1}{5}$$
C No unique value of $$'x'$$
D None of these
Answer :   $$\frac{1}{5}$$

150. Let \[M = \left[ \begin{array}{l} \,\,\,{\sin ^4}\theta \,\,\,\,\,\,\,\,\,\,\, - 1 - {\sin ^2}\theta \\ 1 + {\cos ^2}\theta \,\,\,\,\,\,\,\,\,\,\,\,\,\,{\cos ^4}\theta \end{array} \right] = \alpha I + \beta {M^{ - 1}}\]         Where $$\alpha = \alpha \left( \theta \right){\text{and }}\beta = \beta \left( \theta \right)$$     are real numbers, and $$I$$ is the $$2 \times 2$$  identity matrix. If $${a^*}$$ is the minimum of the set $$\left\{ {\alpha \left( \theta \right):\theta \in \left[ {0,2\pi } \right)} \right\}$$    and $${\beta ^*}$$ is the minimum of the set $$\left\{ {\beta \left( \theta \right):\theta \in \left[ {0,2\pi } \right)} \right\}.$$    Then the value of $${a^*} + {b^ * }$$  is

A $$ - \frac{{31}}{{16}}$$
B $$ - \frac{{17}}{{16}}$$
C $$ - \frac{{37}}{{16}}$$
D $$ - \frac{{29}}{{16}}$$
Answer :   $$ - \frac{{29}}{{16}}$$