Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

151. The rank of the matrix \[\left[ {\begin{array}{*{20}{c}} { - 5}&3&2 \\ 3&2&{ - 5} \\ 4&{ - 1}&{ - 3} \end{array}} \right]\]   is

A 3
B 2
C 1
D None of these
Answer :   2

152. If $${e^{i\theta }} = \cos \theta + i\sin \theta ,$$    then the value of \[\left| {\begin{array}{*{20}{c}} 1&{{e^{\frac{{i\pi }}{3}}}}&{{e^{\frac{{i\pi }}{4}}}}\\ {{e^{ - \frac{{i\pi }}{3}}}}&1&{{e^{\frac{{i2\pi }}{3}}}}\\ {{e^{ - \frac{{i\pi }}{4}}}}&{{e^{ - \frac{{i2\pi }}{3}}}}&1 \end{array}} \right|\]    is

A $$ - 2 + \sqrt 2 $$
B $$ 2 - \sqrt 2 $$
C $$ - 2 - \sqrt 2 $$
D $$1$$
Answer :   $$ - 2 - \sqrt 2 $$

153. How many $$3 \times 3$$  matrices $$M$$ with entries from $$\left\{ {0,1,2} \right\}$$  are there, for which the sum of the diagonal entries of $${M^T}M$$  is 5?

A 126
B 198
C 162
D 135
Answer :   198

154. Let $$A$$ and $$B$$ be $$3 \times 3$$  matrices of real numbers, where $$A$$ is symmetric, $$B$$ is skew symmetric, and $$\left( {A + B} \right)\left( {A - B} \right) = \left( {A - B} \right)\left( {A + B} \right).$$       If $${\left( {AB} \right)^t} = {\left( { - 1} \right)^k}AB,$$    where $${\left( {AB} \right)^t}$$  is the transpose of the matrix $$AB,$$ then $$k$$ is

A any integer
B odd integer
C even integer
D cannot say anything
Answer :   odd integer

155. Consider the following statements :
1. If $$\det \,{A = 0},$$   then $$\det \left( {adj\,A} \right) = 0$$
2. If $$A$$ is non-singular, then $$\det \left( {{A^{ - 1}}} \right) = {\left( {\det \,A} \right)^{ - 1}}$$

A 1 only
B 2 only
C Both 1 and 2
D Neither 1 nor 2
Answer :   Both 1 and 2

156. If \[A = \left[ \begin{array}{l} 5a\,\,\,\,\, - b\\ \,3\,\,\,\,\,\,\,\,\,\,2 \end{array} \right]\]   and $$A$$ $$adj\,\,A = A\,{A^T},$$   then $$5a + b$$  is equal to:

A 4
B 13
C $$- 1$$
D 5
Answer :   5

157. Suppose the system of equations
$$\eqalign{ & {a_1}x + {b_1}y + {c_1}z = {d_1} \cr & {a_2}x + {b_2}y + {c_2}z = {d_2} \cr & {a_3}x + {b_3}y + {c_3}z = {d_3} \cr} $$
has a unique solution $$\left( {{x_0},{y_0},{z_0}} \right).$$   If $$x_0 = 0,$$  then which one of the following is correct ?

A \[\left| {\begin{array}{*{20}{c}} {{a_1}}&{{b_1}}&{{c_1}}\\ {{a_2}}&{{b_2}}&{{c_2}}\\ {{a_3}}&{{b_3}}&{{c_3}} \end{array}} \right| = 0\]
B \[\left| {\begin{array}{*{20}{c}} {{d_1}}&{{b_1}}&{{c_1}}\\ {{d_2}}&{{b_2}}&{{c_2}}\\ {{d_3}}&{{b_3}}&{{c_3}} \end{array}} \right| = 0\]
C \[\left| {\begin{array}{*{20}{c}} {{d_1}}&{{a_1}}&{{c_1}}\\ {{d_2}}&{{a_2}}&{{c_2}}\\ {{d_3}}&{{a_3}}&{{c_3}} \end{array}} \right| = 0\]
D \[\left| {\begin{array}{*{20}{c}} {{d_1}}&{{a_1}}&{{b_1}}\\ {{d_2}}&{{a_2}}&{{b_2}}\\ {{d_3}}&{{a_3}}&{{b_3}} \end{array}} \right| = 0\]
Answer :   \[\left| {\begin{array}{*{20}{c}} {{d_1}}&{{b_1}}&{{c_1}}\\ {{d_2}}&{{b_2}}&{{c_2}}\\ {{d_3}}&{{b_3}}&{{c_3}} \end{array}} \right| = 0\]

158. If \[f\left( x \right) = \left| {\begin{array}{*{20}{c}} {{2^{ - x}}}&{{e^{x{{\log }_e}2}}}&{{x^2}}\\ {{2^{ - 3x}}}&{{e^{3x{{\log }_e}2}}}&{{x^4}}\\ {{2^{ - 5x}}}&{{e^{5x{{\log }_e}2}}}&1 \end{array}} \right|,\]      then

A $$f\left( x \right) + f\left( { - x} \right) = 0$$
B $$f\left( x \right) - f\left( { - x} \right) = 0$$
C $$f\left( x \right) + f\left( { - x} \right) = 2$$
D None of these
Answer :   $$f\left( x \right) + f\left( { - x} \right) = 0$$

159. If $$a \ne b \ne c$$   such that \[\left| {\begin{array}{*{20}{c}} {{a^3} - 1}&{{b^3} - 1}&{{c^3} - 1} \\ a&b&c \\ {{a^2}}&{{b^2}}&{{c^2}} \end{array}} \right| = 0\]      then

A $$ab + bc + ca = 0$$
B $$a + b + c = 0$$
C $$abc = 1$$
D $$a + b + c = 1$$
Answer :   $$abc = 1$$

160. Let $$A$$ and $$B$$ be two matrices of order $$n \times n.$$  Let $$A$$ be non-singular and $$B$$ be singular. Consider the following :
1. $$AB$$  is singular
2. $$AB$$  is non-singular
3. $$A^{–1}B$$  is singular
4. $$A^{–1}B$$  is non singular
Which of the above is/ are correct ?

A 1 and 3
B 2 and 4 only
C 1 only
D 3 only
Answer :   2 and 4 only