Matrices and Determinants MCQ Questions & Answers in Algebra | Maths
Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.
151.
The rank of the matrix \[\left[ {\begin{array}{*{20}{c}}
{ - 5}&3&2 \\
3&2&{ - 5} \\
4&{ - 1}&{ - 3}
\end{array}} \right]\] is
A
3
B
2
C
1
D
None of these
Answer :
2
\[\left| {\begin{array}{*{20}{c}}
{ - 5}&3&2 \\
3&2&{ - 5} \\
4&{ - 1}&{ - 3}
\end{array}} \right| = 0\,\,{\text{and }}\left| {\begin{array}{*{20}{c}}
{ - 5}&3 \\
3&2
\end{array}} \right| \ne 0.\] So, the only possible third-order minor is 0, while one second-order minor is non-zero. So, the rank is 2.
152.
If $${e^{i\theta }} = \cos \theta + i\sin \theta ,$$ then the value of \[\left| {\begin{array}{*{20}{c}}
1&{{e^{\frac{{i\pi }}{3}}}}&{{e^{\frac{{i\pi }}{4}}}}\\
{{e^{ - \frac{{i\pi }}{3}}}}&1&{{e^{\frac{{i2\pi }}{3}}}}\\
{{e^{ - \frac{{i\pi }}{4}}}}&{{e^{ - \frac{{i2\pi }}{3}}}}&1
\end{array}} \right|\] is
153.
How many $$3 \times 3$$ matrices $$M$$ with entries from $$\left\{ {0,1,2} \right\}$$ are there, for which the sum of the diagonal entries of $${M^T}M$$ is 5?
A
126
B
198
C
162
D
135
Answer :
198
Let \[\begin{array}{l}
M = \left[ \begin{array}{l}
{a_1}\,\,\,\,\,\,{a_2}\,\,\,\,\,\,{a_3}\\
{a_4}\,\,\,\,\,\,{a_5}\,\,\,\,\,\,{a_6}\\
{a_7}\,\,\,\,\,\,{a_8}\,\,\,\,\,\,{a_9}
\end{array} \right]{\rm{where }}\,\,{a_i} \in \left\{ {0,1,2} \right\}\\
{\rm{Then }}\,\,{M^T}M = \left[ \begin{array}{l}
{a_1}\,\,\,\,\,\,\,\,{a_4}\,\,\,\,\,\,\,\,{a_7}\\
{a_2}\,\,\,\,\,\,\,\,{a_5}\,\,\,\,\,\,\,\,{a_8}\\
{a_3}\,\,\,\,\,\,\,\,{a_6}\,\,\,\,\,\,\,\,{a_9}
\end{array} \right]\left[ \begin{array}{l}
{a_1}\,\,\,\,\,\,{a_2}\,\,\,\,\,\,{a_3}\\
{a_4}\,\,\,\,\,\,{a_5}\,\,\,\,\,\,{a_6}\\
{a_7}\,\,\,\,\,\,{a_8}\,\,\,\,\,\,{a_9}
\end{array} \right]
\end{array}\]
Sum of the diagonal entries in $${M^T}M = 5$$
$$ \Rightarrow \,\,\left( {{a_1}^2 + {a_4}^2 + {a_7}^2} \right) + \left( {{a_2}^2 + {a_5}^2 + {a_8}^2} \right) + \left( {{a_3}^2 + {a_6}^2 + {a_9}^2} \right) = 5$$
It is possible when Case I :
5 $${a_i}s$$ are 1 and 4 $${a_i}\,'s$$ are zero
Which can be done in
$$^9{C_4}\,{\text{ways = }}\frac{{9 \times 8 \times 7 \times 6}}{{4 \times 3 \times 2 \times 1}} = 126$$ Case II :
1 $${a_i}$$ is 1 and 1$${a_i}$$ is 2 and rest.
7 $${a_i}\,'s$$ are Zero
It can be done in $$^9{C_1} \times {\,^8}{C_1} = 9 \times 8 = 72\,{\text{ways}}$$
$$\therefore \,\,{\text{Total no}}{\text{. of ways}} = 126 + 72 = 198.$$
154.
Let $$A$$ and $$B$$ be $$3 \times 3$$ matrices of real numbers, where $$A$$ is symmetric, $$B$$ is skew symmetric, and $$\left( {A + B} \right)\left( {A - B} \right) = \left( {A - B} \right)\left( {A + B} \right).$$ If $${\left( {AB} \right)^t} = {\left( { - 1} \right)^k}AB,$$ where $${\left( {AB} \right)^t}$$ is the transpose of the matrix $$AB,$$ then $$k$$ is
A
any integer
B
odd integer
C
even integer
D
cannot say anything
Answer :
odd integer
$$\eqalign{
& \left( {A + B} \right)\left( {A - B} \right) = \left( {A - B} \right)\left( {A + B} \right) \cr
& \Rightarrow AB = BA \cr} $$
as $$A$$ is symmetric and $$B$$ is skew-symmetric
$${\left( {AB} \right)^t} = - AB$$
⇒ $$k$$ is an odd integer.
155.
Consider the following statements :
1. If $$\det \,{A = 0},$$ then $$\det \left( {adj\,A} \right) = 0$$
2. If $$A$$ is non-singular, then $$\det \left( {{A^{ - 1}}} \right) = {\left( {\det \,A} \right)^{ - 1}}$$
A
1 only
B
2 only
C
Both 1 and 2
D
Neither 1 nor 2
Answer :
Both 1 and 2
We know that, $$adj \,A$$ and $$A$$ has same value of determinant, if $$\det \,{A = 0},$$ then $$\det \left( {adj\,A} \right) = 0$$
so, statement (1) is correct.
Also If $$A$$ is a matrix the determinant of $$A^{- 1}$$ equals inverse of determinant $$A,$$ so, $$\det \left( {{A^{ - 1}}} \right) = {\left( {\det \,A} \right)^{ - 1}},$$ if $$A$$ is non singular; Statement 2 is correct.
Thus both (1) and (2) are correct.
156.
If \[A = \left[ \begin{array}{l}
5a\,\,\,\,\, - b\\
\,3\,\,\,\,\,\,\,\,\,\,2
\end{array} \right]\] and $$A$$ $$adj\,\,A = A\,{A^T},$$ then $$5a + b$$ is equal to:
157.
Suppose the system of equations
$$\eqalign{
& {a_1}x + {b_1}y + {c_1}z = {d_1} \cr
& {a_2}x + {b_2}y + {c_2}z = {d_2} \cr
& {a_3}x + {b_3}y + {c_3}z = {d_3} \cr} $$
has a unique solution $$\left( {{x_0},{y_0},{z_0}} \right).$$ If $$x_0 = 0,$$ then which one of the following is correct ?
A
\[\left| {\begin{array}{*{20}{c}}
{{a_1}}&{{b_1}}&{{c_1}}\\
{{a_2}}&{{b_2}}&{{c_2}}\\
{{a_3}}&{{b_3}}&{{c_3}}
\end{array}} \right| = 0\]
B
\[\left| {\begin{array}{*{20}{c}}
{{d_1}}&{{b_1}}&{{c_1}}\\
{{d_2}}&{{b_2}}&{{c_2}}\\
{{d_3}}&{{b_3}}&{{c_3}}
\end{array}} \right| = 0\]
C
\[\left| {\begin{array}{*{20}{c}}
{{d_1}}&{{a_1}}&{{c_1}}\\
{{d_2}}&{{a_2}}&{{c_2}}\\
{{d_3}}&{{a_3}}&{{c_3}}
\end{array}} \right| = 0\]
D
\[\left| {\begin{array}{*{20}{c}}
{{d_1}}&{{a_1}}&{{b_1}}\\
{{d_2}}&{{a_2}}&{{b_2}}\\
{{d_3}}&{{a_3}}&{{b_3}}
\end{array}} \right| = 0\]
160.
Let $$A$$ and $$B$$ be two matrices of order $$n \times n.$$ Let $$A$$ be non-singular and $$B$$ be singular. Consider the following :
1. $$AB$$ is singular
2. $$AB$$ is non-singular
3. $$A^{–1}B$$ is singular
4. $$A^{–1}B$$ is non singular
Which of the above is/ are correct ?
A
1 and 3
B
2 and 4 only
C
1 only
D
3 only
Answer :
2 and 4 only
If $$A$$ is non-singular and $$B$$ is singular, then $$AB$$ and $$A^{–1}B$$ are non-singular. Statements (2) and (4) are correct.