Matrices and Determinants MCQ Questions & Answers in Algebra | Maths

Learn Matrices and Determinants MCQ questions & answers in Algebra are available for students perparing for IIT-JEE and engineering Enternace exam.

171. The sum of two non-integral roots of \[\left| {\begin{array}{*{20}{c}} x&2&5 \\ 3&x&3 \\ 5&4&x \end{array}} \right| = 0\]    is

A $$5$$
B $$ - 5$$
C $$ - 18$$
D None of these
Answer :   $$ - 5$$

172. If $$A$$ and $$B$$ are symmetric matrices of the same order and $$X = AB + BA$$    and $$Y = AB - BA,$$    then $${\left( {XY} \right)^T}$$  is equal to

A $$XY$$
B $$YX$$
C $$- YX$$
D None of these
Answer :   $$- YX$$

173. The determinant \[\left| {\begin{array}{*{20}{c}} x&{\sin \theta }&{\cos \theta }\\ { - \sin \theta }&{ - x}&1\\ {\cos \theta }&1&x \end{array}} \right|\]     is independent of

A $$x$$ only
B $$\theta $$ only
C $$x$$ and $$\theta $$ both
D None of these
Answer :   $$\theta $$ only

174. If \[A = \left[ {\begin{array}{*{20}{c}} 2&2\\ 2&2 \end{array}} \right],\]   then what is $$A^n$$ equal to ?

A \[\left[ {\begin{array}{*{20}{c}} {{2^n}}&{{2^n}}\\ {{2^n}}&{{2^n}} \end{array}} \right]\]
B \[\left[ {\begin{array}{*{20}{c}} 2n&2n\\ 2n&2n \end{array}} \right]\]
C \[\left[ {\begin{array}{*{20}{c}} {{2^{2n - 1}}}&{{2^{2n - 1}}}\\ {{2^{2n - 1}}}&{{2^{2n - 1}}} \end{array}} \right]\]
D \[\left[ {\begin{array}{*{20}{c}} {{2^{2n + 1}}}&{{2^{2n + 1}}}\\ {{2^{2n + 1}}}&{{2^{2n + 1}}} \end{array}} \right]\]
Answer :   \[\left[ {\begin{array}{*{20}{c}} {{2^{2n - 1}}}&{{2^{2n - 1}}}\\ {{2^{2n - 1}}}&{{2^{2n - 1}}} \end{array}} \right]\]

175. Elements of a matrix $$A$$ of order $$10 \times 10$$  are defined as $$a_{ij} = w^{i+j}$$  (where $$w$$ is cube root of unity), then $$tr\left( A \right)$$  of the matrix is

A 0
B 1
C 3
D None of these
Answer :   None of these

176. Let $$\omega $$ be a complex number such that $$2\omega + 1 = z$$   where $$z = \sqrt { - 3} .$$   If \[\left| \begin{array}{l} 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,1\\ 1\,\,\,\,\,\, - {\omega ^2} - 1\,\,\,\,\,\,\,\,\,{\omega ^2}\\ 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{\omega ^2}\,\,\,\,\,\,\,\,\,\,\,{\omega ^7} \end{array} \right| = 3k,\]      then $$k$$ is equal to:

A 1
B $$- z$$
C $$z$$
D $$- 1$$
Answer :   $$- z$$

177. The determinant \[\left| {\begin{array}{*{20}{c}} {a + b + c}&{a + b}&a\\ {4a + 3b + 2c}&{3a + 2b}&{2a}\\ {10a + 6b + 3c}&{6a + 3b}&{3a} \end{array}} \right|\]      is independent of which one of the following ?

A $$a$$ and $$b$$
B $$b$$ and $$c$$
C $$a$$ and $$c$$
D All of these
Answer :   $$b$$ and $$c$$

178. Let $$\omega \ne 1$$  be a cube root of unity and $$S$$ be the set of all non-singular matrices of the form \[\left| \begin{array}{l} 1\,\,\,\,\,\,\,\,a\,\,\,\,\,\,\,\,b\\ \omega \,\,\,\,\,\,\,1\,\,\,\,\,\,\,\,c\\ {\omega ^2}\,\,\,\,\omega \,\,\,\,\,\,\,\,1 \end{array} \right|\]   where each of $$a, b$$  and $$c$$ is either \[\omega \] or \[{\omega ^2}\] . Then the number of distinct matrices in the set $$S$$ is

A 2
B 6
C 4
D 8
Answer :   6

179. Let \[A = \left[ {\begin{array}{*{20}{c}} 0&\alpha \\ 0&0 \end{array}} \right]\]   and \[{\left( {A + I} \right)^{50}} - 50A = \left[ {\begin{array}{*{20}{c}} a&b\\ c&d \end{array}} \right],\]      find $$abc + abd + bcd + acd$$

A $$0$$
B $$ - 1$$
C $$1$$
D None of these
Answer :   $$0$$

180. If \[A = \left[ {\begin{array}{*{20}{c}} 0&1&3\\ 1&2&3\\ 3&a&1 \end{array}} \right]\]   and \[{A^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {\frac{1}{2}}&{ - \frac{1}{2}}&{\frac{1}{2}}\\ { - 4}&3&c\\ {\frac{5}{2}}&{ - \frac{3}{2}}&{\frac{1}{2}} \end{array}} \right],\]     then the value of $$a + c$$  is equal to

A 1
B 0
C 2
D None of these
Answer :   0