205.
If the system of linear equations $$x + 2ay + az = 0 ; x + 3by + bz = 0 ; x + 4cy + cz = 0$$ has a non - zero solution, then $$a, b, c.$$
A
satisfy $$a + 2b + 3c = 0$$
B
are in A.P.
C
are in G.P.
D
are in H.P.
Answer :
are in H.P.
For homogeneous system of equations to have non zero solution, $$\Delta = 0$$
\[\begin{array}{l}
\left| {\begin{array}{*{20}{c}}
1&{2a}&a\\
1&{3b}&b\\
1&{4c}&c
\end{array}} \right| = 0\left[ {\therefore {C_2} \to {C_2} - 2{C_3}} \right]\\
\left| {\begin{array}{*{20}{c}}
1&0&a\\
1&b&b\\
1&{2c}&c
\end{array}} \right| = 0\left[ {{R_3} \to {R_3} - {R_2},{R_2} \to {R_2} - {R_1}} \right]
\end{array}\]
On simplification, $$\frac{2}{b} = \frac{1}{a} + \frac{1}{c}$$
∴ $$a, b, c$$ are in Harmonic Progression.
206.
If $$a > 0, b > 0, c > 0$$ are respectively the $$p^{th}, q^{th}, r^{th}$$ terms of G.P., then the value of the determinant \[\left| {\begin{array}{*{20}{c}}
{\log a}&p&1\\
{\log b}&q&1\\
{\log c}&r&1
\end{array}} \right|\] is
A
$$0$$
B
$$1$$
C
$$ - 1$$
D
None of these
Answer :
$$0$$
Let $$A$$ be the $$1^{st}$$ term and $$R$$ the common ratio of G.P., then ;
$$\eqalign{
& a = {T_p} = A{R^{p - 1}} \cr
& \therefore \log a = \log A + \left( {p - 1} \right)\log R \cr} $$
Similarly, $$\log b = \log A + \left( {q - 1} \right)\log R$$
and $$\log c = \log A + \left( {r - 1} \right)\log R$$
\[\therefore \Delta = \left| {\begin{array}{*{20}{c}}
{\log A + \left( {p - 1} \right)\log R}&p&1\\
{\log A + \left( {q - 1} \right)\log R}&q&1\\
{\log A + \left( {r - 1} \right)\log R}&r&1
\end{array}} \right|\]
Split into two determinants and in the first take $$\log A$$ common and in the second take $$\log R$$ common
\[\Delta = \log A\left| {\begin{array}{*{20}{c}}
1&p&1\\
1&q&1\\
1&r&1
\end{array}} \right| + \log R\left| {\begin{array}{*{20}{c}}
{p - 1}&p&1\\
{q - 1}&q&1\\
{r - 1}&r&1
\end{array}} \right|\]
Apply $${C_1} \to {C_1} - {C_2} + {C_3}$$ in the second
\[\Delta = 0 + \log R\left| {\begin{array}{*{20}{c}}
0&p&1\\
0&q&1\\
0&r&1
\end{array}} \right| = 0\]
207.
\[A = \left| {\begin{array}{*{20}{c}}
{2a}&{3r}&x\\
{4b}&{6s}&{2y}\\
{ - 2c}&{ - 3t}&{ - z}
\end{array}} \right| = \lambda \left| {\begin{array}{*{20}{c}}
a&r&x\\
b&s&y\\
c&t&z
\end{array}} \right|,\] then what is the value of $$\lambda \,?$$
A
$$12$$
B
$$ - 12$$
C
$$7$$
D
$$ - 7$$
Answer :
$$ - 12$$
Given, \[\left| {\begin{array}{*{20}{c}}
{2a}&{3r}&x\\
{4b}&{6s}&{2y}\\
{ - 2c}&{ - 3t}&{ - z}
\end{array}} \right| = \lambda \left| {\begin{array}{*{20}{c}}
a&r&x\\
b&s&y\\
c&t&z
\end{array}} \right|\]
Taking 2 common from $$C_1$$ and 3 from $$C_2$$ in L.H.S.
\[\therefore 2 \times 3\left| {\begin{array}{*{20}{c}}
a&r&x\\
{2b}&{2s}&{2y}\\
{ - c}&{ - t}&{ - z}
\end{array}} \right| = \lambda \left| {\begin{array}{*{20}{c}}
a&r&x\\
b&s&y\\
c&t&z
\end{array}} \right|\]
Taking 2 common from $$R_2$$ and $$- 1$$ from $$R_3$$ in L.H.S.
\[\therefore \, - 12\left| {\begin{array}{*{20}{c}}
a&r&x\\
b&s&y\\
c&t&z
\end{array}} \right| = \lambda \left| {\begin{array}{*{20}{c}}
a&r&x\\
b&s&y\\
c&t&z
\end{array}} \right|\]
$$ \Rightarrow \,\lambda = - 12$$
208.
If $$\left[ {\,\,} \right]$$ denotes the greatest integer less than or equal to the real number under consideration and $$ - 1 \leqslant x < 0;0 \leqslant y < 1;1 \leqslant z < 2,$$ then the value of the determinant \[\left| {\begin{array}{*{20}{c}}
{\left[ x \right] + 1}&{\left[ y \right]}&{\left[ z \right]}\\
{\left[ x \right]}&{\left[ y \right] + 1}&{\left[ z \right]}\\
{\left[ x \right]}&{\left[ y \right]}&{\left[ z \right] + 1}
\end{array}} \right|\] is
A
$$\left[ z \right]$$
B
$$\left[ y \right]$$
C
$$\left[ x \right]$$
D
None of these
Answer :
$$\left[ z \right]$$
Since, $$ - 1 < x < 0$$
$$\eqalign{
& \therefore \left[ x \right] = - 1 \cr
& 0 < y < 1 \cr
& \therefore \left[ y \right] = 0, \cr
& 1 < z < 2 \cr
& \therefore \left[ z \right] = 1 \cr} $$
∴ Given determinant \[ = \left| {\begin{array}{*{20}{c}}
0&0&1\\
{ - 1}&1&1\\
{ - 1}&0&2
\end{array}} \right| = 1 = \left[ z \right]\]